Quantum Probability from Subjective Likelihood: improving on Deutsch's proof of the probability rule

I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.

[1]  Alain Aspect,et al.  Speakable and Unspeakable in Quantum Mechanics: Quantum mechanics for cosmologists , 2004 .

[2]  Edward Farhi,et al.  How probability arises in quantum mechanics , 1989 .

[3]  Habib,et al.  Coherent states via decoherence. , 1993, Physical review letters.

[4]  Hilary Greaves,et al.  Understanding Deutsch's probability in a deterministic multiverse , 2003, quant-ph/0312136.

[5]  James B. Hartle,et al.  Quantum Mechanics of Individual Systems , 1968, 1907.02953.

[6]  A. Baier,et al.  Reasons and Persons , 1984 .

[7]  David Wallace,et al.  Worlds in the Everett interpretation , 2001, quant-ph/0103092.

[8]  Richard D. Gill On an argument of David Deutsch , 2003 .

[9]  Jeremy Butterfield,et al.  Whither the Minds , 1996 .

[10]  David Wallace,et al.  Everett and structure , 2001 .

[11]  Simon Saunders Time, Quantum Mechanics, and Probability , 2004, Synthese.

[12]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[13]  Meir Hemmo,et al.  The Quantum Mechanics of Minds and Worlds , 2002 .

[14]  Simon French Decision, Probability and Utility: Selected Readings , 1989 .

[15]  B. M. Hill,et al.  Theory of Probability , 1990 .

[16]  David Wallace,et al.  Implications of quantum theory in the foundations of statistical mechanics , 2001 .

[17]  James B. Hartle,et al.  Quantum Mechanics in the Light of Quantum Cosmology , 2018, 1803.04605.

[18]  David Deutsch,et al.  Quantum theory as a universal physical theory , 1985 .

[19]  Avshalom C. Elitzur,et al.  Quo Vadis Quantum Mechanics , 2005 .

[20]  H. Bandemer Savage, L. J.: Foundations of Statistics. Dover Publ., Inc,. New York 1972. 310 S. , 1974 .

[21]  P. Fishburn Subjective expected utility: A review of normative theories , 1981 .

[22]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[23]  D. Papineau,et al.  Many Minds are No Worse than One , 1996 .

[24]  N. Bostrom Anthropic Bias: Observation Selection Effects in Science and Philosophy , 2002 .

[25]  D. Raine,et al.  Quantum Gravity 2: A Second Oxford Symposium , 1982 .

[26]  S. Saunders What is Probability , 2004, quant-ph/0412194.

[27]  David Wallace,et al.  Quantum Probability and Decision Theory, Revisited , 2002 .

[28]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .

[29]  L. M. M.-T. Theory of Probability , 1929, Nature.

[30]  David Deutsch Quantum theory of probability and decisions , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Asher Peres,et al.  Quantum Theory Needs No ‘Interpretation’ , 2000 .

[32]  R. Schack,et al.  Quantum probability from decision theory? , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[34]  Simon Saunders Derivation of the Born rule from operational assumptions , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Peter J. Lewis Deutsch on quantum decision theory , 2003 .

[36]  David Wallace Everettian Rationality: defending Deutsch's approach to probability in the Everett interpretation , 2003 .

[37]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[38]  F. Ramsey The Foundations of Mathematics and Other Logical Essays , 2001 .

[39]  Barry Loewer,et al.  Interpreting the many worlds interpretation , 1988, Synthese.

[40]  Virendra Singh,et al.  Quantum Mechanics and Reality , 2004, quant-ph/0412148.