Structure determination of membrane proteins in five easy pieces.

[1]  A. Robinson Production of membrane proteins : strategies for expression and isolation , 2011 .

[2]  A. Goddard,et al.  Solution- and solid-state NMR studies of GPCRs and their ligands. , 2011, Biochimica et biophysica acta.

[3]  S. Opella,et al.  A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. , 2011, Journal of magnetic resonance.

[4]  J. Tommassen,et al.  Solid-state NMR on a large multidomain integral membrane protein: the outer membrane protein assembly factor BamA. , 2011, Journal of the American Chemical Society.

[5]  M. Scrima,et al.  Mechanically, magnetically, and "rotationally aligned" membrane proteins in phospholipid bilayers give equivalent angular constraints for NMR structure determination. , 2010, The journal of physical chemistry. B.

[6]  Homayoun Valafar,et al.  Simultaneous structure and dynamics of a membrane protein using REDCRAFT: membrane-bound form of Pf1 coat protein. , 2010, Journal of magnetic resonance.

[7]  S. Grage,et al.  Membrane alignment of the pore-forming component TatA(d) of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy. , 2010, Journal of the American Chemical Society.

[8]  Huan‐Xiang Zhou,et al.  Insight into the Mechanism of the Influenza A Proton Channel from a Structure in a Lipid Bilayer , 2010, Science.

[9]  S. Opella,et al.  Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. , 2010, Biophysical journal.

[10]  C. Rienstra,et al.  Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. , 2010, Journal of molecular biology.

[11]  Samuel L. DeLuca,et al.  Practically Useful: What the Rosetta Protein Modeling Suite Can Do for You , 2010, Biochemistry.

[12]  Miles Congreve,et al.  The impact of GPCR structures on pharmacology and structure‐based drug design , 2010, British journal of pharmacology.

[13]  S. Opella,et al.  (1)H-(13)C Hetero-nuclear dipole-dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins. , 2010, Journal of magnetic resonance.

[14]  Cinque S. Soto,et al.  Structure of the Amantadine Binding Site of Influenza M2 Proton Channels In Lipid Bilayers , 2010, Nature.

[15]  S. Opella,et al.  Labeling strategies for 13C-detected aligned-sample solid-state NMR of proteins. , 2009, Journal of magnetic resonance (San Diego, Calif. 1997 : Print).

[16]  S. Opella,et al.  A strip-shield improves the efficiency of a solenoid coil in probes for high-field solid-state NMR of lossy biological samples. , 2009, Journal of magnetic resonance.

[17]  C. Jaroniec,et al.  Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins. , 2009, Journal of the American Chemical Society.

[18]  M. Caffrey Crystallizing membrane proteins for structure determination: use of lipidic mesophases. , 2009, Annual review of biophysics.

[19]  F. Marassi,et al.  Orientation of the Escherichia coli outer membrane protein OmpX in phospholipid bilayer membranes determined by solid-State NMR. , 2008, Biochemistry.

[20]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[21]  Benjamin J. Wylie,et al.  Multidimensional solid state NMR of anisotropic interactions in peptides and proteins. , 2008, The Journal of chemical physics.

[22]  E. Ron FEMS - Federation of European Microbiological Societies: past, present and future. , 2008, Research in microbiology.

[23]  S. Opella,et al.  Tailoring 13C labeling for triple‐resonance solid‐state NMR experiments on aligned samples of proteins , 2007, Magnetic resonance in chemistry : MRC.

[24]  D. Baker,et al.  Toward high-resolution prediction and design of transmembrane helical protein structures , 2007, Proceedings of the National Academy of Sciences.

[25]  Benjamin J. Wylie,et al.  Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins , 2007, Journal of biomolecular NMR.

[26]  F. Marassi,et al.  Structural similarity of a membrane protein in micelles and membranes. , 2007, Journal of the American Chemical Society.

[27]  S. Opella,et al.  Triple resonance experiments for aligned sample solid-state NMR of (13)C and (15)N labeled proteins. , 2007, Journal of magnetic resonance.

[28]  S. Opella,et al.  Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples. , 2007, Journal of magnetic resonance.

[29]  S. Opella,et al.  Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. , 2006, Journal of the American Chemical Society.

[30]  S. Opella,et al.  High-resolution NMR spectroscopy of a GPCR in aligned bicelles. , 2006, Journal of the American Chemical Society.

[31]  Calculating protein structures directly from anisotropic spin interaction constraints , 2006, Magnetic resonance in chemistry : MRC.

[32]  D. Baker,et al.  Multipass membrane protein structure prediction using Rosetta , 2005, Proteins.

[33]  S. Opella,et al.  NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. , 2005, Biochemistry.

[34]  S. Opella,et al.  High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. , 2004, Journal of the American Chemical Society.

[35]  Paul Rutgeerts,et al.  CXCR1‐binding chemokines in inflammatory bowel diseases: down‐regulated IL‐8/CXCL8 production by leukocytes in Crohn's disease and selective GCP‐2/CXCL6 expression in inflamed intestinal tissue , 2004, European journal of immunology.

[36]  Charles R Sanders,et al.  Disease-related misassembly of membrane proteins. , 2004, Annual review of biophysics and biomolecular structure.

[37]  S. Opella,et al.  Structure determination of aligned samples of membrane proteins by NMR spectroscopy , 2004, Magnetic resonance in chemistry : MRC.

[38]  Mauricio Montal,et al.  Three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) from HIV-1. , 2003, Journal of molecular biology.

[39]  G. Veglia,et al.  Dipolar waves map the structure and topology of helices in membrane proteins. , 2003, Journal of the American Chemical Society.

[40]  R. Tycko,et al.  Recoupling of chemical shift anisotropies in solid-state NMR under high-speed magic-angle spinning and in uniformly 13C-labeled systems , 2003 .

[41]  S. Opella,et al.  Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints , 2003, Protein science : a publication of the Protein Society.

[42]  S. Opella,et al.  Structural fitting of PISEMA spectra of aligned proteins. , 2003, Journal of magnetic resonance.

[43]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[44]  A Nevzorov,et al.  Structure determination of membrane proteins by NMR spectroscopy. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[45]  Sanguk Kim,et al.  The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR. , 2002, Biochemistry.

[46]  Tomas Lozano-Perez,et al.  De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Opella,et al.  Using Pisa pies to resolve ambiguities in angular constraints from PISEMA spectra of aligned proteins , 2002, Journal of biomolecular NMR.

[48]  G. Veglia,et al.  Dipolar waves as NMR maps of protein structure. , 2002, Journal of the American Chemical Society.

[49]  R. Cogdell,et al.  Heteronuclear 2D-correlations in a uniformly [13C, 15N] labeled membrane-protein complex at ultra-high magnetic fields , 2001, Journal of biomolecular NMR.

[50]  F. Marassi A simple approach to membrane protein secondary structure and topology based on NMR spectroscopy. , 2001, Biophysical journal.

[51]  R G Griffin,et al.  Recoupling of heteronuclear dipolar interactions with rotational-echo double-resonance at high magic-angle spinning frequencies. , 2000, Journal of magnetic resonance.

[52]  S. Opella,et al.  A solid-state NMR index of helical membrane protein structure and topology. , 2000, Journal of magnetic resonance.

[53]  J Wang,et al.  Imaging membrane protein helical wheels. , 2000, Journal of magnetic resonance.

[54]  C. Leang,et al.  MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? , 2000, FEBS letters.

[55]  R. Vogel,et al.  Bacterial expression of G-protein-coupled receptors: prediction of expression levels from sequence. , 2000, Receptors & channels.

[56]  R. Vogel,et al.  Refolding of G-protein-coupled receptors from inclusion bodies produced in Escherichia coli. , 1999, Biochemical Society transactions.

[57]  J. Gesell,et al.  Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy , 1999, Nature Structural Biology.

[58]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[59]  L. Gierasch,et al.  Orientations of helical peptides in membrane bilayers by solid state NMR spectroscopy. , 1996, Solid state nuclear magnetic resonance.

[60]  B. Meier,et al.  Efficient N-15-C-13 polarization transfer by adiabatic-passage Hartmann-Hahn cross polarization , 1996 .

[61]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[62]  Ayyalusamy Ramamoorthy,et al.  High-Resolution Heteronuclear Dipolar Solid-State NMR Spectroscopy , 1994 .

[63]  S. Opella,et al.  Solid-state NMR structural studies of peptides and proteins in membranes , 1994 .

[64]  T. Cross,et al.  Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D. , 1990, Biophysical journal.

[65]  T. Gullion,et al.  Rotational-Echo, Double-Resonance NMR , 1989 .

[66]  P. Stewart,et al.  Solid-state nuclear magnetic resonance structural studies of proteins. , 1989, Methods in enzymology.

[67]  P. Stewart,et al.  Protein structure by solid-state NMR spectroscopy , 1987, Quarterly Reviews of Biophysics.

[68]  P. Stewart,et al.  Peptide plane orientations determined by fundamental and overtone 14N NMR , 1986 .

[69]  R. Griffin,et al.  NMR structural analysis of a membrane protein: bacteriorhodopsin peptide backbone orientation and motion. , 1985, Biochemistry.

[70]  J. Herzfeld,et al.  Sideband intensities in NMR spectra of samples spinning at the magic angle , 1980 .

[71]  J. Waugh Uncoupling of local field spectra in nuclear magnetic resonance: determination of atomic positions in solids. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[72]  G. Radda,et al.  Application of 31P NMR to model and biological membrane systems , 1975, FEBS letters.

[73]  Alexander Pines,et al.  Proton‐enhanced NMR of dilute spins in solids , 1973 .

[74]  R. Griffin,et al.  19F Shielding Tensors from Coherently Narrowed NMR Powder Spectra , 1971 .

[75]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[76]  E. Kraus,et al.  Recent Climatic Changes , 1958, Nature.

[77]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[78]  G. Pake Nuclear Resonance Absorption in Hydrated Crystals: Fine Structure of the Proton Line , 1948 .