Stabilization of the Timoshenko Beam System with Restricted Boundary Feedback Controls
暂无分享,去创建一个
Genqi Xu | Zhong-Jie Han | Dongyi Liu | G. Xu | Liping Zhang | Z. Han | Dongyi Liu | Liping Zhang
[1] Zhi-zhong Sun,et al. A finite difference scheme for solving the Timoshenko beam equations with boundary feedback , 2007 .
[2] Genqi Xu,et al. The Riesz basis property of a Timoshenko beam with boundary feedback and application , 2002 .
[3] J. U. Kim,et al. Boundary control of the Timoshenko beam , 1987 .
[4] E. Zeidler. Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .
[5] M. Slemrod,et al. Asymptotic behavior of nonlinear contraction semigroups , 1973 .
[6] 下村 明洋. 書評 T. Cazenave and A. Haraux: An Introduction to Semilinear Evolution Equations (Revised Edition) (Oxford Lecture Ser. Math. Appl., 13) , 2004 .
[7] Y. Kōmura,et al. Nonlinear semi-groups in Hilbert space , 1967 .
[8] Marshall Slemrod. Feedback stabilization of a linear control system in Hilbert space with ana priori bounded control , 1989, Math. Control. Signals Syst..
[9] V. Balakrishnan.A.. On Superstability of Semigroups , 1997 .
[10] Shuzhi Sam Ge,et al. Boundary Output-Feedback Stabilization of a Timoshenko Beam Using Disturbance Observer , 2013, IEEE Transactions on Industrial Electronics.
[11] E. Zeidler. Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .
[12] Eberhard Zeidler,et al. Nonlinear monotone operators , 1990 .
[13] Stephen P. Timoshenko,et al. Vibration problems in engineering , 1928 .
[14] A. Haraux. Nonlinear evolution equations: Global behavior of solutions , 1981 .
[15] A. Haraux,et al. An Introduction to Semilinear Evolution Equations , 1999 .
[16] A. V. Balakrishnan. Superstability of systems , 2005, Appl. Math. Comput..
[17] Ömer Morgül. Dynamic boundary control of the timoshenko beam , 1992, Autom..
[18] Bao-Zhu Guo,et al. Riesz basis and stabilization for the flexible structure of a symmetric tree‐shaped beam network , 2008 .
[19] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[20] B. Chentouf. Boundary Feedback Stabilization of a Variant of the SCOLE Model , 2003 .
[21] M.S. de Queiroz,et al. Boundary control of the Timoshenko beam with free-end mass/inertial dynamics , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[22] Weak asymptotic decay via a «relaxed invariance principle» for a wave equation with nonlinear, non-monotone damping , 1989 .
[23] A. J. van der Merwe,et al. A Timoshenko beam with tip body and boundary damping , 2004 .
[24] Genqi Xu,et al. Riesz basis property of serially connected Timoshenko beams , 2007, Int. J. Control.
[25] Dongyi Liu,et al. Super-stability and the spectrum of one-dimensional wave equations on general feedback controlled networks , 2014, IMA J. Math. Control. Inf..
[26] Brigitte d'Andréa-Novel,et al. Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane , 1994, Math. Control. Signals Syst..
[27] Jun-Min Wang,et al. Spectral analysis and system of fundamental solutions for Timoshenko beams , 2005, Appl. Math. Lett..
[28] Eberhard Zeidler,et al. Variational methods and optimization , 1985 .
[29] Brigitte d'Andréa-Novel,et al. Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach , 2000, Autom..