Restoration of polarimetric SAR images using simulated annealing

Filtering synthetic aperture radar (SAR) images ideally results in better estimates of the parameters characterizing the distributed targets in the images while preserving the structures of the nondistributed targets. However, these objectives are normally conflicting, often leading to a filtering approach favoring one of the objectives. An algorithm for estimating the radar cross-section (RCS) for intensity SAR images has previously been proposed in the literature based on Markov random fields and the stochastic optimization method simulated annealing. A new version of the algorithm is presented applicable to multilook polarimetric SAR images, resulting in an estimate of the mean covariance matrix rather than the RCS. Small windows are applied in the filtering, and due to the iterative nature of the approach, reasonable estimates of the polarimetric quantities characterizing the distributed targets are obtained while at the same time preserving most of the structures in the image. The algorithm is evaluated using multilook polarimetric L-band data from the Danish airborne EMISAR system, and the impact of the algorithm on the unsupervised H-/spl alpha/ classification is demonstrated.

[1]  F. Ulaby,et al.  Radar polarimetry for geoscience applications , 1990 .

[2]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[3]  Rod Cook,et al.  Radar cross-section estimation of SAR images , 1995, Remote Sensing.

[4]  Guoqing Liu,et al.  The multilook polarimetric whitening filter (MPWF) for intensity speckle reduction in polarimetric SAR images , 1998, IEEE Trans. Geosci. Remote. Sens..

[5]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[6]  Henning Skriver,et al.  Multitemporal C- and L-band polarimetric signatures of crops , 1999, IEEE Trans. Geosci. Remote. Sens..

[7]  D. Geman Random fields and inverse problems in imaging , 1990 .

[8]  Armand Lopes,et al.  Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution , 1997, IEEE Trans. Geosci. Remote. Sens..

[9]  J. S. Lee,et al.  Classification of multi-look polarimetric SAR data based on complex Wishart distribution , 1992, [Proceedings] NTC-92: National Telesystems Conference.

[10]  N. Higham,et al.  Numerical analysis of a quadratic matrix equation , 2000 .

[11]  Richard Geoffrey White Simulated annealing algorithm for radar cross-section estimation and segmentation , 1994, Defense, Security, and Sensing.

[12]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[13]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Lester Ingber,et al.  Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.

[15]  Leslie M. Novak,et al.  Optimal Speckle Reduction In Polarimetric Sar Imagery* , 1988, Twenty-Second Asilomar Conference on Signals, Systems and Computers.

[16]  Richard Geoffrey White Simulated annealing algorithm for SAR and MTI image cross section estimation , 1994, Remote Sensing.

[17]  O. Hellwich MODEL PARAMETER ESTIMATION USING SIMULATED ANNEALING , 1998 .

[18]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[19]  Jong-Sen Lee,et al.  Speckle reduction in multipolarization, multifrequency SAR imagery , 1991, IEEE Trans. Geosci. Remote. Sens..

[20]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[21]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[22]  Ian McConnell,et al.  Comparison of annealing and iterated filters for speckle reduction in SAR , 1996, Remote Sensing.

[23]  R. T. Shin,et al.  K-Distribution and Multi-Frequency Polarmetric Terrain Radar Clutter , 1991 .

[24]  J. Harms,et al.  PULSAR: Parallel Noise Despeckling of SAR Images , 1996, HPCN Europe.

[25]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[26]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Søren Nørvang Madsen,et al.  EMISAR: an absolutely calibrated polarimetric L- and C-band SAR , 1998, IEEE Trans. Geosci. Remote. Sens..