Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries

Abstract Carbon nanotubes (CNTs) loaded with Ag and TiO 2 nanoparticles (Ag–TiO 2 /CNTs) are a composite showing promise as an anode material in lithium-ion batteries. Here we prepare Ag–TiO 2 /CNTs via hydrolysis and reduction processes. The morphology, structure, and electrochemical performance of the composite were investigated by transmission electron microscopy, X-ray diffraction, and a variety of electrochemical techniques. The results show that the TiO 2 and Ag nanoparticles were uniformly deposited on the surface of CNTs with crystallite sizes of ∼12 and 30 nm, respectively. The Ag–TiO 2 /CNTs anode materials showed superior cycling stability and a high reversible capacity of 172 mAh/g after 30 cycles. Ag addition not only increases the electronic conductivity of the composites, but also allows convenient transfer of Li-ion in the composite structure.

[1]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[2]  Huaihe Song,et al.  Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries , 2006 .

[3]  S. Dou,et al.  Preparation and characterization of carbon nanotubes for energy storage , 2003 .

[4]  B. Dong,et al.  Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery , 2007 .

[5]  Xiaohong Chen,et al.  Carbon nanotube capsules self-assembled by w/o emulsion technique. , 2007, Langmuir.

[6]  Thomas Gennett,et al.  High-energy, rechargeable Li-ion battery based on carbon nanotube technology , 2004 .

[7]  W. K. Zhang,et al.  Electrochemical investigation of TiO2/carbon nanotubes nanocomposite as anode materials for lithium-ion batteries , 2007 .

[8]  Ying Yu,et al.  Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O , 2007 .

[9]  J. Schoonman,et al.  Spatial Extent of Lithium Intercalation in Anatase TiO2 , 1999 .

[10]  Zhiyu Jiang,et al.  Synthesis of spinel LiMn2O4 using direct solid state reaction , 2002 .

[11]  J. J. Murray,et al.  Electrochemical Intercalation of Lithium into Graphite , 1993 .

[12]  M. Wagemaker,et al.  Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.

[13]  Weixiang Chen,et al.  The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes , 2003 .

[14]  Maomao Chen,et al.  Synthesis and characterization of SnO–carbon nanotube composite as anode material for lithium-ion batteries , 2003 .

[15]  L. Fu,et al.  Novel TiO2/C nanocomposites for anode materials of lithium ion batteries , 2006 .

[16]  Robert Dominko,et al.  Carbon nanocoatings on active materials for Li-ion batteries , 2007 .

[17]  B. Simard,et al.  Charge-discharge characteristics of raw acid-oxidized carbon nanotubes , 2002 .

[18]  Xuejie Huang,et al.  Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries , 2006 .

[19]  Yong Yang,et al.  Electrochemical Performance and Surface Properties of Bare and TiO2-Coated Cathode Materials in Lithium-Ion Batteries , 2004 .

[20]  Huaihe Song,et al.  Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries , 2007 .

[21]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[22]  G. Fey,et al.  Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries , 2004 .