Impact ionization coefficients and critical electric field in GaN

Avalanche multiplication characteristics in a reverse-biased homoepitaxial GaN p–n junction diode are experimentally investigated at 223–373 K by novel photomultiplication measurements utilizing above- and below-bandgap illumination. The device has a non-punch-through one-side abrupt p–-n+ junction structure, in which the depletion layer mainly extends to the p-type region. For above-bandgap illumination, the light is absorbed at the surface p+-layer, and the generated electrons diffuse and reach the depletion layer, resulting in an electron-injected photocurrent. On the other hand, for below-bandgap illumination, the light penetrates a GaN layer and is absorbed owing to the Franz–Keldysh effect in the high electric field region (near the p–n junction interface), resulting in a hole-induced photocurrent. The theoretical (non-multiplicated) photocurrents are calculated elaborately, and the electron- and hole-initiated multiplication factors are extracted as ratios of the experimental data to the calculated values. Through the mathematical analyses of the multiplication factors, the temperature dependences of the impact ionization coefficients of electrons and holes in GaN are extracted and formulated by the Okuto–Crowell model. The ideal breakdown voltage and the critical electric field for GaN p–n junctions of varying doping concentration are simulated using the obtained impact ionization coefficients, and their temperature dependence and conduction-type dependence were discussed. The simulated breakdown characteristics show good agreement with data reported previously, suggesting the high accuracy of the impact ionization coefficients obtained in this study.

[1]  J. Suda,et al.  Formation of highly vertical trenches with rounded corners via inductively coupled plasma reactive ion etching for vertical GaN power devices , 2021 .

[2]  M. Boćkowski,et al.  Progress on and challenges of p-type formation for GaN power devices , 2020 .

[3]  T. Kimoto,et al.  Experimental Determination of Impact Ionization Coefficients Along 〈1120〉 in 4H-SiC , 2020, IEEE Transactions on Electron Devices.

[4]  T. Kimoto,et al.  Theoretical analysis of band structure effects on impact ionization coefficients in wide-bandgap semiconductors , 2020, Applied Physics Express.

[5]  T. Mishima,et al.  Two-Step Mesa Structure GaN p-n Diodes With Low ON-Resistance, High Breakdown Voltage, and Excellent Avalanche Capabilities , 2020, IEEE Electron Device Letters.

[6]  T. Kimoto,et al.  Impact Ionization Coefficients in GaN Measured by Above- and Sub-Eg Illuminations for p−/n+ Junction , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[7]  Minghua Zhu,et al.  1200 V Multi-Channel Power Devices with 2.8 Ω•mm ON-Resistance , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[8]  T. Kimoto,et al.  Measurement of avalanche multiplication utilizing Franz-Keldysh effect in GaN p-n junction diodes with double-side-depleted shallow bevel termination , 2019, Applied Physics Letters.

[9]  D. Ji,et al.  Experimental determination of impact ionization coefficients of electrons and holes in gallium nitride using homojunction structures , 2019, Applied Physics Letters.

[10]  K. Ueno,et al.  Demonstration of 1200 V/1.4 mΩ cm2 vertical GaN planar MOSFET fabricated by an all ion implantation process , 2019, Japanese Journal of Applied Physics.

[11]  H. Amano,et al.  Deeply and vertically etched butte structure of vertical GaN p–n diode with avalanche capability , 2019, Japanese Journal of Applied Physics.

[12]  T. Kimoto,et al.  Shockley–Read–Hall lifetime in homoepitaxial p-GaN extracted from recombination current in GaN p–n+ junction diodes , 2019, Japanese Journal of Applied Physics.

[13]  Tohru Oka,et al.  100 A Vertical GaN Trench MOSFETs with a Current Distribution Layer , 2019, 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD).

[14]  T. Kimoto,et al.  Design and Fabrication of GaN p-n Junction Diodes With Negative Beveled-Mesa Termination , 2019, IEEE Electron Device Letters.

[15]  T. Kimoto,et al.  Parallel-Plane Breakdown Fields of 2.8-3.5 MV/cm in GaN-on-GaN p-n Junction Diodes with Double-Side-Depleted Shallow Bevel Termination , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[16]  T. Kimoto,et al.  Impact ionization coefficients of 4H-SiC in a wide temperature range , 2018, Japanese Journal of Applied Physics.

[17]  Wide range doping control and defect characterization of GaN layers with various Mg concentrations , 2018, Journal of Applied Physics.

[18]  Roy A. Stillwell,et al.  Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk GaN substrates , 2018, Applied Physics Letters.

[19]  T. Kimoto,et al.  Franz-Keldysh effect in GaN p-n junction diode under high reverse bias voltage , 2018, Applied Physics Letters.

[20]  A. Uedono,et al.  Large electron capture-cross-section of the major nonradiative recombination centers in Mg-doped GaN epilayers grown on a GaN substrate , 2018 .

[21]  H. Amano,et al.  Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate , 2018 .

[22]  T. Kachi,et al.  The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate , 2018 .

[23]  T. Kimoto,et al.  Sources of carrier compensation in metalorganic vapor phase epitaxy-grown homoepitaxial n-type GaN layers with various doping concentrations , 2018 .

[24]  Umesh K. Mishra,et al.  Demonstrating >1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large-area devices , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[25]  D. Jena,et al.  Design and Realization of GaN Trench Junction-Barrier-Schottky-Diodes , 2017, IEEE Transactions on Electron Devices.

[26]  T. Palacios,et al.  High-Performance GaN Vertical Fin Power Transistors on Bulk GaN Substrates , 2017, IEEE Electron Device Letters.

[27]  U. Mishra,et al.  In Situ Oxide, GaN Interlayer-Based Vertical Trench MOSFET (OG-FET) on Bulk GaN substrates , 2017, IEEE Electron Device Letters.

[28]  Tetsuzo Ueda,et al.  1.7 kV/1.0 mΩcm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[29]  M. Okada,et al.  Franz–Keldysh effect in n-type GaN Schottky barrier diode under high reverse bias voltage , 2016 .

[30]  Huili Grace Xing,et al.  1.7-kV and 0.55- $\text{m}\Omega \cdot \text {cm}^{2}$ GaN p-n Diodes on Bulk GaN Substrates With Avalanche Capability , 2016, IEEE Electron Device Letters.

[31]  I. C. Kizilyalli,et al.  4-kV and 2.8- $\text{m}\Omega $ -cm2 Vertical GaN p-n Diodes With Low Leakage Currents , 2015, IEEE Electron Device Letters.

[32]  Tsutomu Ina,et al.  1.8 mΩ·cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation , 2015 .

[33]  Tsunenobu Kimoto,et al.  Impact Ionization Coefficients in 4H-SiC Toward Ultrahigh-Voltage Power Devices , 2015, IEEE Transactions on Electron Devices.

[34]  D. Bour,et al.  Vertical Power p-n Diodes Based on Bulk GaN , 2015, IEEE Transactions on Electron Devices.

[35]  Daisuke Ueda,et al.  GaN transistors on Si for switching and high-frequency applications , 2014 .

[36]  T. Kachi Recent progress of GaN power devices for automotive applications , 2014 .

[37]  D. Bour,et al.  1.5-kV and 2.2-m (Omega ) -cm (^{2}) Vertical GaN Transistors on Bulk-GaN Substrates , 2014 .

[38]  T. Oka,et al.  Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV , 2014 .

[39]  H. Tokuda,et al.  A model for calculating impact ionization transition rate in wurtzite GaN for use in breakdown voltage simulation , 2013 .

[40]  M. Uren,et al.  Determination of the dielectric constant of GaN in the kHz frequency range , 2011 .

[41]  Koji Katayama,et al.  Extremely Low On-Resistance and High Breakdown Voltage Observed in Vertical GaN Schottky Barrier Diodes with High-Mobility Drift Layers on Low-Dislocation-Density GaN Substrates , 2010 .

[42]  D. Planson,et al.  Optical beam induced current measurements: principles and applications to SiC device characterization , 2009 .

[43]  M. Moresco,et al.  Theory of high field carrier transport and impact ionization in wurtzite GaN. Part I: A full band Monte Carlo model , 2009 .

[44]  Mark van Schilfgaarde,et al.  Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the GW approximation , 2008, 0812.2923.

[45]  B. Jayant Baliga,et al.  Fundamentals of Power Semiconductor Devices , 2008 .

[46]  M. Mukherjee,et al.  GaN IMPATT diode: a photo-sensitive high power terahertz source , 2007 .

[47]  T. Kachi,et al.  A Vertical Insulated Gate AlGaN/GaN Heterojunction Field-Effect Transistor , 2007 .

[48]  Manijeh Razeghi,et al.  Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes , 2007 .

[49]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[50]  Michael Wraback,et al.  GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition , 2006 .

[51]  N. Sano,et al.  Impact ionization coefficients of 4H silicon carbide , 2004 .

[52]  L. Reggiani,et al.  Monte Carlo study of hot-carrier transport in bulk wurtzite GaN and modeling of a near-terahertz impact avalanche transit time diode , 2004 .

[53]  R. Aleksiejūnas,et al.  Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers , 2003 .

[54]  Marius Grundmann,et al.  Band-structure pseudopotential calculation of zinc-blende and wurtzite AlN, GaN, and InN , 2003 .

[55]  S. S. Park,et al.  Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers , 2002 .

[56]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[57]  Giovanni Ghione,et al.  Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN , 2000 .

[58]  K. Kunihiro,et al.  Experimental evaluation of impact ionization coefficients in GaN , 1999, IEEE Electron Device Letters.

[59]  Joan M. Redwing,et al.  High voltage (450 V) GaN Schottky rectifiers , 1999 .

[60]  John F. Muth,et al.  Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements , 1997 .

[61]  Q. Wahab,et al.  Ionization rates and critical fields in 4H silicon carbide , 1997 .

[62]  Takashi Jimbo,et al.  Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method , 1997 .

[63]  K. Brennan,et al.  Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN , 1997 .

[64]  K. Brennan,et al.  Monte Carlo calculation of electron initiated impact ionization in bulk zinc-blende and wurtzite GaN , 1997 .

[65]  M. Khan,et al.  Fundamental optical transitions in GaN , 1996 .

[66]  Shirley,et al.  Quasiparticle band structure of AlN and GaN. , 1993, Physical review. B, Condensed matter.

[67]  G. Stillman,et al.  The determination of impact ionization coefficients in (100) gallium arsenide using avalanche noise and photocurrent multiplication measurements , 1985, IEEE Transactions on Electron Devices.

[68]  M. Mikhailova,et al.  High Energy Distribution Function in an Electric Field and Electron Impact Ionization in AIIIBV Semiconductors , 1982 .

[69]  T. Yamaoka,et al.  Ionization rates for electrons and holes in GaAs , 1978 .

[70]  C. R. Crowell,et al.  Threshold energy effect on avalanche breakdown voltage in semiconductor junctions , 1975 .

[71]  C. M. Wolfe,et al.  Unequal electron and hole impact ionization coefficients in GaAs , 1974 .

[72]  W. C. Johnson,et al.  Use of a Schottky barrier to measure impact ionization coefficients in semiconductors , 1973 .

[73]  Marc Ilegems,et al.  Infrared Lattice Vibrations and Free-Electron Dispersion in GaN , 1973 .

[74]  R. V. Overstraeten,et al.  Measurement of the ionization rates in diffused silicon p-n junctions , 1970 .

[75]  D. Aspnes Electric-Field Effects on Optical Absorption near Thresholds in Solids , 1966 .

[76]  W. Franz Einfluß eines elektrischen Feldes auf eine optische Absorptionskante , 1958 .

[77]  A. G. Chynoweth,et al.  Ionization Rates for Electrons and Holes in Silicon , 1958 .

[78]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .