Large Steklov eigenvalues via homogenisation on manifolds
暂无分享,去创建一个
[1] S. Nayatani,et al. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian , 2017, Comptes Rendus Mathematique.
[2] A. Siconolfi,et al. Homogenization on arbitrary manifolds , 2012, 1211.1081.
[3] Nicolaos Kapouleas,et al. Free boundary minimal surfaces with connected boundary in the $3$-ball by tripling the equatorial disc , 2017, Journal of Differential Geometry.
[4] G. Allaire,et al. Shape optimization by the homogenization method , 1997 .
[5] R. Schoen,et al. Shape optimization for the Steklov problem in higher dimensions , 2017, Advances in Mathematics.
[6] N. Nadirashvili,et al. How large can the first eigenvalue be on a surface of genus two , 2005, math/0509398.
[7] Ahmad El Soufi,et al. Isoperimetric control of the Steklov spectrum , 2011, 1103.2863.
[8] R. Schoen,et al. Minimal surfaces and eigenvalue problems , 2013, 1304.0851.
[9] Jeffrey Rauch,et al. Potential and scattering theory on wildly perturbed domains , 1975 .
[10] Kenneth A. Brakke,et al. The Surface Evolver , 1992, Exp. Math..
[11] A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle , 2006, math/0701773.
[12] Brian Davies,et al. Partial Differential Equations II , 2002 .
[13] Nikolai Nadirashvili,et al. The Erwin Schrr Odinger International Institute for Mathematical Physics Berger's Isoperimetric Problem and Minimal Immersions of Surfaces Berger's Isoperimetric Problem and Minimal Immersions of Surfaces , 2022 .
[14] W. Stekloff,et al. Sur les problèmes fondamentaux de la physique mathématique , 1902 .
[15] Homogenization of metrics in oscillating manifolds , 2015, 1511.04250.
[16] È. Vinberg,et al. Discrete Groups of Motions of Spaces of Constant Curvature , 1993 .
[17] Rongjie Lai,et al. Maximization of Laplace−Beltrami eigenvalues on closed Riemannian surfaces , 2014, 1405.4944.
[18] I. Chavel,et al. Spectra of domains in compact manifolds , 1978 .
[19] D. Cianci,et al. On branched minimal immersions of surfaces by first eigenfunctions , 2017, Annals of Global Analysis and Geometry.
[20] Shing-Tung Yau,et al. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .
[21] I. Polterovich,et al. Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces , 2012, 1209.4869.
[22] Y. C. Verdière,et al. Sur la multiplicité de la première valeur propre non nulle du Laplacien , 1986 .
[23] Mario B. Schulz,et al. Free boundary minimal surfaces with connected boundary and arbitrary genus , 2020, Cambridge Journal of Mathematics.
[24] N. Nadirashvili,et al. An isoperimetric inequality for Laplace eigenvalues on the sphere , 2017, Journal of Differential Geometry.
[25] I. Chavel,et al. Spectra of manifolds less a small domain , 1988 .
[26] Ahmad El Soufi,et al. Eigenvalues of the Laplacian on a compact manifold with density , 2013, 1310.1490.
[27] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[28] J. Stubbe,et al. Weyl-type bounds for Steklov eigenvalues , 2016, Journal of Spectral Theory.
[29] Iosif Polterovich,et al. Spectral geometry of the Steklov problem (Survey article) , 2017 .
[30] L∞ bounds of Steklov eigenfunctions and spectrum stability under domain variation , 2020 .
[31] B. Colbois,et al. Extremal Eigenvalues of the Laplacian in a Conformal Class of Metrics: The `Conformal Spectrum' , 2003, math/0409316.
[32] C. Xia,et al. Sharp bounds for the first non-zero Stekloff eigenvalues , 2009 .
[33] F. Pacard,et al. Free boundary minimal surfaces in the unit 3-ball , 2015, 1502.06812.
[34] Changwei Xiong. Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds , 2017, Journal of Functional Analysis.
[35] B. Colbois,et al. Spectrum of the Laplacian with weights , 2016, Annals of Global Analysis and Geometry.
[36] A. Fraser,et al. Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary , 2012, 1204.6127.
[37] The construction of periodic unfolding operators on some compact Riemannian manifolds , 2014 .
[38] M. Berger,et al. Le Spectre d'une Variete Riemannienne , 1971 .
[39] S. Yau,et al. Eigenvalues of elliptic operators and geometric applications , 2004 .
[40] A. Girouard,et al. The Steklov and Laplacian spectra of Riemannian manifolds with boundary , 2018, Journal of Functional Analysis.
[41] L. Evans. Measure theory and fine properties of functions , 1992 .
[42] M. Li. Free boundary minimal surfaces in the unit ball : recent advances and open questions , 2019, 1907.05053.
[43] Michael Taylor,et al. Partial Differential Equations I: Basic Theory , 1996 .
[44] A. Girouard,et al. The Steklov spectrum and coarse discretizations of manifolds with boundary , 2016, 1612.07665.
[45] R. Schoen,et al. Sharp eigenvalue bounds and minimal surfaces in the ball , 2012, 1209.3789.
[46] N. Nadirashvili,et al. An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane , 2016, Geometric and Functional Analysis.
[47] Daniel Ketover. Free boundary minimal surfaces of unbounded genus , 2016, 1612.08691.
[48] Daniel Ketover. Equivariant min-max theory , 2016, 1612.08692.
[49] Nicholas J. Korevaar. Upper bounds for eigenvalues of conformal metrics , 1993 .
[50] L. J. Boya,et al. On Regular Polytopes , 2012, 1210.0601.
[51] A. Girouard,et al. The spectral gap of graphs and Steklov eigenvalues on surfaces , 2013, 1310.2869.
[52] M. Karpukhin. Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds , 2015, 1512.09038.
[53] P. D. Lamberti,et al. Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues , 2014, 1410.0517.
[54] Peter J. McGrath. A Characterization of the Critical Catenoid , 2016, 1603.04114.
[55] M. Karpukhin. Index of minimal spheres and isoperimetric eigenvalue inequalities , 2019, 1905.03174.
[56] Antoine Henrot,et al. From Steklov to Neumann via homogenisation , 2021, Archive for rational mechanics and analysis.
[57] Richard Schoen,et al. The first Steklov eigenvalue, conformal geometry, and minimal surfaces , 2009, 0912.5392.
[58] Michael E. Taylor,et al. Partial Differential Equations , 1996 .
[59] V. G. Sigillito,et al. Inequalities for membrane and Stekloff eigenvalues , 1968 .
[60] Homogenisation on homogeneous spaces , 2018 .
[61] Anna Siffert,et al. A note on Kuttler–Sigillito’s inequalities , 2017, Annales mathématiques du Québec.
[62] G. Kokarev. Variational aspects of Laplace eigenvalues on Riemannian surfaces , 2011, 1103.2448.
[63] B. Smyth. Stationary minimal surfaces with boundary on a simplex , 1984 .
[64] J. Dodziuk,et al. Riemannian metrics with large , 1994 .
[65] Eigenvalue Optimisation on Flat Tori and Lattice Points in Anisotropically Expanding Domains , 2018, Canadian Journal of Mathematics.
[66] J. Lohkamp. Discontinuity of geometric expansions , 1996 .
[67] I. Polterovich,et al. Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound , 2015, 1510.07281.
[68] J. Dodziuk,et al. RIEMANNIAN METRICS WITH LARGE Xx , 2010 .
[69] Extremal Metric for the First Eigenvalue on a Klein Bottle , 2003, Canadian Journal of Mathematics.
[70] M. Li,et al. Free boundary minimal surfaces in the unit three-ball via desingularization of the critical catenoid and the equatorial disc , 2017, 1709.08556.