Large Steklov eigenvalues via homogenisation on manifolds

Using methods in the spirit of deterministic homogenisation theory we obtain convergence of the Steklov eigenvalues of a sequence of domains in a Riemannian manifold to weighted Laplace eigenvalues of that manifold. The domains are obtained by removing small geodesic balls that are asymptotically densely uniformly distributed as their radius tends to zero. We use this relationship to construct manifolds that have large Steklov eigenvalues. In dimension two, and with constant weight equal to 1, we prove that Kokarev’s upper bound of $$8\pi $$ 8 π for the first nonzero normalised Steklov eigenvalue on orientable surfaces of genus 0 is saturated. For other topological types and eigenvalue indices, we also obtain lower bounds on the best upper bound for the eigenvalue in terms of Laplace maximisers. For the first two eigenvalues, these lower bounds become equalities. A surprising consequence is the existence of free boundary minimal surfaces immersed in the unit ball by first Steklov eigenfunctions and with area strictly larger than $$2\pi $$ 2 π . This was previously thought to be impossible. We provide numerical evidence that some of the already known examples of free boundary minimal surfaces have these properties and also exhibit simulations of new free boundary minimal surfaces of genus zero in the unit ball with even larger area. We prove that the first nonzero Steklov eigenvalue of all these examples is equal to 1, as a consequence of their symmetries and topology, so that they are consistent with a general conjecture by Fraser and Li. In dimension three and larger, we prove that the isoperimetric inequality of Colbois–El Soufi–Girouard is sharp and implies an upper bound for weighted Laplace eigenvalues. We also show that in any manifold with a fixed metric, one can construct by varying the weight a domain with connected boundary whose first nonzero normalised Steklov eigenvalue is arbitrarily large.

[1]  S. Nayatani,et al.  Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian , 2017, Comptes Rendus Mathematique.

[2]  A. Siconolfi,et al.  Homogenization on arbitrary manifolds , 2012, 1211.1081.

[3]  Nicolaos Kapouleas,et al.  Free boundary minimal surfaces with connected boundary in the $3$-ball by tripling the equatorial disc , 2017, Journal of Differential Geometry.

[4]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[5]  R. Schoen,et al.  Shape optimization for the Steklov problem in higher dimensions , 2017, Advances in Mathematics.

[6]  N. Nadirashvili,et al.  How large can the first eigenvalue be on a surface of genus two , 2005, math/0509398.

[7]  Ahmad El Soufi,et al.  Isoperimetric control of the Steklov spectrum , 2011, 1103.2863.

[8]  R. Schoen,et al.  Minimal surfaces and eigenvalue problems , 2013, 1304.0851.

[9]  Jeffrey Rauch,et al.  Potential and scattering theory on wildly perturbed domains , 1975 .

[10]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[11]  A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle , 2006, math/0701773.

[12]  Brian Davies,et al.  Partial Differential Equations II , 2002 .

[13]  Nikolai Nadirashvili,et al.  The Erwin Schrr Odinger International Institute for Mathematical Physics Berger's Isoperimetric Problem and Minimal Immersions of Surfaces Berger's Isoperimetric Problem and Minimal Immersions of Surfaces , 2022 .

[14]  W. Stekloff,et al.  Sur les problèmes fondamentaux de la physique mathématique , 1902 .

[15]  Homogenization of metrics in oscillating manifolds , 2015, 1511.04250.

[16]  È. Vinberg,et al.  Discrete Groups of Motions of Spaces of Constant Curvature , 1993 .

[17]  Rongjie Lai,et al.  Maximization of Laplace−Beltrami eigenvalues on closed Riemannian surfaces , 2014, 1405.4944.

[18]  I. Chavel,et al.  Spectra of domains in compact manifolds , 1978 .

[19]  D. Cianci,et al.  On branched minimal immersions of surfaces by first eigenfunctions , 2017, Annals of Global Analysis and Geometry.

[20]  Shing-Tung Yau,et al.  A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .

[21]  I. Polterovich,et al.  Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces , 2012, 1209.4869.

[22]  Y. C. Verdière,et al.  Sur la multiplicité de la première valeur propre non nulle du Laplacien , 1986 .

[23]  Mario B. Schulz,et al.  Free boundary minimal surfaces with connected boundary and arbitrary genus , 2020, Cambridge Journal of Mathematics.

[24]  N. Nadirashvili,et al.  An isoperimetric inequality for Laplace eigenvalues on the sphere , 2017, Journal of Differential Geometry.

[25]  I. Chavel,et al.  Spectra of manifolds less a small domain , 1988 .

[26]  Ahmad El Soufi,et al.  Eigenvalues of the Laplacian on a compact manifold with density , 2013, 1310.1490.

[27]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[28]  J. Stubbe,et al.  Weyl-type bounds for Steklov eigenvalues , 2016, Journal of Spectral Theory.

[29]  Iosif Polterovich,et al.  Spectral geometry of the Steklov problem (Survey article) , 2017 .

[30]  L∞ bounds of Steklov eigenfunctions and spectrum stability under domain variation , 2020 .

[31]  B. Colbois,et al.  Extremal Eigenvalues of the Laplacian in a Conformal Class of Metrics: The `Conformal Spectrum' , 2003, math/0409316.

[32]  C. Xia,et al.  Sharp bounds for the first non-zero Stekloff eigenvalues , 2009 .

[33]  F. Pacard,et al.  Free boundary minimal surfaces in the unit 3-ball , 2015, 1502.06812.

[34]  Changwei Xiong Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds , 2017, Journal of Functional Analysis.

[35]  B. Colbois,et al.  Spectrum of the Laplacian with weights , 2016, Annals of Global Analysis and Geometry.

[36]  A. Fraser,et al.  Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary , 2012, 1204.6127.

[37]  The construction of periodic unfolding operators on some compact Riemannian manifolds , 2014 .

[38]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .

[39]  S. Yau,et al.  Eigenvalues of elliptic operators and geometric applications , 2004 .

[40]  A. Girouard,et al.  The Steklov and Laplacian spectra of Riemannian manifolds with boundary , 2018, Journal of Functional Analysis.

[41]  L. Evans Measure theory and fine properties of functions , 1992 .

[42]  M. Li Free boundary minimal surfaces in the unit ball : recent advances and open questions , 2019, 1907.05053.

[43]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[44]  A. Girouard,et al.  The Steklov spectrum and coarse discretizations of manifolds with boundary , 2016, 1612.07665.

[45]  R. Schoen,et al.  Sharp eigenvalue bounds and minimal surfaces in the ball , 2012, 1209.3789.

[46]  N. Nadirashvili,et al.  An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane , 2016, Geometric and Functional Analysis.

[47]  Daniel Ketover Free boundary minimal surfaces of unbounded genus , 2016, 1612.08691.

[48]  Daniel Ketover Equivariant min-max theory , 2016, 1612.08692.

[49]  Nicholas J. Korevaar Upper bounds for eigenvalues of conformal metrics , 1993 .

[50]  L. J. Boya,et al.  On Regular Polytopes , 2012, 1210.0601.

[51]  A. Girouard,et al.  The spectral gap of graphs and Steklov eigenvalues on surfaces , 2013, 1310.2869.

[52]  M. Karpukhin Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds , 2015, 1512.09038.

[53]  P. D. Lamberti,et al.  Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues , 2014, 1410.0517.

[54]  Peter J. McGrath A Characterization of the Critical Catenoid , 2016, 1603.04114.

[55]  M. Karpukhin Index of minimal spheres and isoperimetric eigenvalue inequalities , 2019, 1905.03174.

[56]  Antoine Henrot,et al.  From Steklov to Neumann via homogenisation , 2021, Archive for rational mechanics and analysis.

[57]  Richard Schoen,et al.  The first Steklov eigenvalue, conformal geometry, and minimal surfaces , 2009, 0912.5392.

[58]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[59]  V. G. Sigillito,et al.  Inequalities for membrane and Stekloff eigenvalues , 1968 .

[60]  Homogenisation on homogeneous spaces , 2018 .

[61]  Anna Siffert,et al.  A note on Kuttler–Sigillito’s inequalities , 2017, Annales mathématiques du Québec.

[62]  G. Kokarev Variational aspects of Laplace eigenvalues on Riemannian surfaces , 2011, 1103.2448.

[63]  B. Smyth Stationary minimal surfaces with boundary on a simplex , 1984 .

[64]  J. Dodziuk,et al.  Riemannian metrics with large , 1994 .

[65]  Eigenvalue Optimisation on Flat Tori and Lattice Points in Anisotropically Expanding Domains , 2018, Canadian Journal of Mathematics.

[66]  J. Lohkamp Discontinuity of geometric expansions , 1996 .

[67]  I. Polterovich,et al.  Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound , 2015, 1510.07281.

[68]  J. Dodziuk,et al.  RIEMANNIAN METRICS WITH LARGE Xx , 2010 .

[69]  Extremal Metric for the First Eigenvalue on a Klein Bottle , 2003, Canadian Journal of Mathematics.

[70]  M. Li,et al.  Free boundary minimal surfaces in the unit three-ball via desingularization of the critical catenoid and the equatorial disc , 2017, 1709.08556.