Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2

We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.

Michael J. Baker | Stefan Wunsch | Ritesh Singh | Thomas Rizzo | Yang Zhang | Wolfgang Waltenberger | Zhen Liu | Andy Buckley | Waleed Abdallah | Kati Lassila-Perini | Stefano Moretti | Michael Kramer | Barry Dillon | Luca Silvestrini | Dipan Sengupta | Sylvain Fichet | Hua-Sheng Shao | Jory Sonneveld | Claudio Campagnari | Philip Bechtle | Sven Heinemeyer | Sabine Kraml | Katri Huitu | Jan Kalinowski | Georg Weiglein | Jonathan Butterworth | Per Osland | Elizabeth Sexton-Kennedy | Peter Athron | Dao Thi Nhung | Juan Rojo | Lei Wu | Kyoungchul Kong | Pat Scott | Charanjit K. Khosa | Veronica Sanz | Tetiana Hryn'ova | Darren Price | Philip Ilten | Orlando Panella | Jesse Thaler | Benjamin Fuks | Achim Geiser | Suchita Kulkarni | Werner Porod | Caterina Doglioni | Sezen Sekmen | Yang Bai | Marcin Chrzaszcz | David Miller | Matthew Feickert | Farida Fassi | John R. Ellis | Clemens Lange | Lara Lloret Iglesias | Gokhan Unel | Andre Lessa | Oleg Ruchayskiy | Myeonghun Park | Aoife Bharucha | Jonas Wittbrodt | Harrison Prosper | Kai Schmidt-Hoberg | Eric Conte | Seung J. Lee | Jurgen Reuter | Matthias Danninger | Humberto Reyes-Gonz'alez | Philippe Gras | Tobias Klingl | Haiying Cai | Alexandre Arbey | Farvah Mahmoudi | Emanuele Bagnaschi | Martin J. White | Csaba Balazs | Jonathan M. Cornell | Anders Kvellestad | Riccardo Torre | Danika MacDonell | Shehu AbdusSalam | Azar Ahmadov | Amine Ahriche | Gael Alguero | Benjamin C. Allanach | Jack Y. Araz | Chiara Arina | Daniele Barducci | Cari Cesarotti | Andrea Coccaro | Louie Dartmoor Corpe | Luc Darm'e | Aldo Deandrea | Nishita Desai | Juhi Dutta | Sebastian Ellis | Nicolas Fernandez | Jernej F. Kamenik | Thomas Flacke | Marie-H'elene Genest | Akshay Ghalsasi | Tomas Gonzalo | Mark Goodsell | Stefania Gori | Admir Greljo | Diego Guadagnoli | Lukas A. Heinrich | Jan Heisig | Deog Ki Hong | Ahmed Ismail | Adil Jueid | Felix Kahlhoefer | Deepak Kar | Yevgeny Kats | Valeri Khoze | Pyungwon Ko | Wojciech Kotlarski | Jeanette M. Lorenz | Judita Mamuzic | Andrea C. Marini | Pete Markowitz | Pablo Martinez Ruiz del Arbol | Vasiliki Mitsou | Marco Nardecchia | Siavash Neshatpour | Patrick H. Owen | Alexander Pankov | Are Raklev | Tania Robens | Janusz A. Rosiek | Seodong Shin | Sukanya Sinha | Yotam Soreq | Giordon H. Stark | Tim Stefaniak | Emilio Torrente-Lujan | Natascia Vignaroli | Nicholas Wardle | Graeme Watt | Sophie L. Williamson | Tevong You | Jos'e Zurita

[1]  David M. Straub,et al.  flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond , 2018, 1810.08132.

[2]  Alexandre Alves,et al.  Electroweak sector under scrutiny: A combined analysis of LHC and electroweak precision data , 2018, Physical Review D.

[3]  C. Hays,et al.  Angles on CP-violation in Higgs boson interactions , 2018, Physics Letters B.

[4]  E. Conte,et al.  Toward a public analysis database for LHC new physics searches using MADANALYSIS 5 , 2014, 1407.3278.

[5]  P. Janot,et al.  Study of Electroweak Interactions at the Energy Frontier , 2013, 1310.6708.

[6]  Gino Isidori,et al.  B-physics anomalies: a guide to combined explanations , 2017, Journal of High Energy Physics.

[7]  Atlas Collaboration,et al.  Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector , 2017, 1707.03263.

[8]  Wolfgang Waltenberger,et al.  SModelS v1.2: Long-lived particles, combination of signal regions, and other novelties , 2018, Comput. Phys. Commun..

[9]  T. Plehn,et al.  O new physics, where art thou? A global search in the top sector , 2019 .

[10]  J. M. Butterworth,et al.  New sensitivity of current LHC measurements to vector-like quarks , 2020 .

[11]  J. M. Butterworth,et al.  BSM constraints from model-independent measurements: A Contur Update , 2019, Journal of Physics: Conference Series.

[12]  Míriam Calvo Gómez,et al.  Measurement of the Ratio of Branching Fractions B(¯B0→D*+τ−¯ντ)/B(¯B0→D*+μ−¯νμ) , 2015 .

[13]  Claude Duhr,et al.  Computing decay rates for new physics theories with FeynRules and MadGraph 5_aMC@NLO , 2015, Comput. Phys. Commun..

[14]  Sahal Yacoob,et al.  Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collision data with the ATLAS detector , 2017, 1712.02332.

[15]  Scoap Measurement of the W+W- cross section in pp collisions at s=8 TeVand limits on anomalous gauge couplings , 2016 .

[16]  M. P. Casado,et al.  Measurement of inclusive and differential cross sections in the H → ZZ* → 4ℓ decay channel in pp collisions at s=13$$ \sqrt{s}=13 $$ TeV with the ATLAS detector , 2017 .

[17]  Andy Buckley,et al.  The simplified likelihood framework , 2018, Journal of High Energy Physics.

[18]  Jonathan L. Feng,et al.  ForwArd Search ExpeRiment at the LHC , 2017, 1708.09389.

[19]  Gilles Louppe,et al.  Constraining Effective Field Theories with Machine Learning. , 2018, Physical review letters.

[20]  David Grellscheid,et al.  Constraining new physics with collider measurements of Standard Model signatures , 2016, 1606.05296.

[21]  Christophe Grojean,et al.  Effective Lagrangian for a light Higgs-like scalar , 2013, 1303.3876.

[22]  S. Ellis,et al.  Light dark sectors through the Fermion portal , 2020, Journal of High Energy Physics.

[23]  Danny van Dyk,et al.  Prospects for disentangling long- and short-distance effects in the decays B → K∗μ+μ− , 2018, Journal of High Energy Physics.

[24]  C. Rogan,et al.  FlavBit: a GAMBIT module for computing flavour observables and likelihoods , 2017, 1705.07933.

[25]  Liam Moore,et al.  Constraining top quark effective theory in the LHC Run II era , 2015, 1512.03360.

[26]  Sascha Caron,et al.  The BSM-AI project: SUSY-AI–generalizing LHC limits on supersymmetry with machine learning , 2016, The European Physical Journal C.

[27]  Farvah Mahmoudi,et al.  SuperIso: A program for calculating the isospin asymmetry of B -> K*gamma in the MSSM , 2007, Comput. Phys. Commun..

[28]  Sahal Yacoob,et al.  Measurements of W±Z production cross sections in pp collisions at s =8 TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings , 2016 .

[29]  W. Y. Chan,et al.  Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in $$pp$$ collisions at $$\sqrt{s}=13$$ TeV with the ATLAS detector , 2019, The European Physical Journal C.

[30]  Steffie Ann Thayil,et al.  MATHUSLA: A Detector Proposal to Explore the Lifetime Frontier at the HL-LHC , 2019, 1901.04040.

[31]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[32]  Jonathan M. Cornell,et al.  A global fit of the MSSM with GAMBIT , 2017, The European Physical Journal C.

[33]  Zoltan Ligeti,et al.  New Predictions for ${\mathrm{{\Lambda}}}_{b}{\rightarrow}{\mathrm{{\Lambda}}}_{c}$ Semileptonic Decays and Tests of Heavy Quark Symmetry , 2018 .

[34]  Benjamin Fuks,et al.  MadAnalysis 5, a user-friendly framework for collider phenomenology , 2012, Comput. Phys. Commun..

[35]  Reinterpretation of searches for supersymmetry in models with variable R-parity-violating coupling strength and long-lived R-hadrons , 2018 .

[36]  K. Cranmer,et al.  RECAST — extending the impact of existing analyses , 2010, 1010.2506.

[37]  Benjamin Fuks,et al.  Cornering sgluons with four-top-quark events , 2018, Physics Letters B.

[38]  Claude Duhr,et al.  UFO - The Universal FeynRules Output , 2011, Comput. Phys. Commun..

[39]  Jonathan M. Cornell,et al.  GAMBIT: the global and modular beyond-the-standard-model inference tool , 2017, The European Physical Journal C.

[40]  F. Ukegawa,et al.  Search for triboson W±W±W∓ production in pp collisions at s√=8 TeV with the ATLAS detector , 2017 .

[41]  Wolfgang Waltenberger,et al.  SModelS v1.1 user manual: Improving simplified model constraints with efficiency maps , 2017, Comput. Phys. Commun..

[42]  T. Aushev,et al.  Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum , 2019, Journal of High Energy Physics.

[43]  M. Ciuchini,et al.  New Physics in b→sℓ+ℓ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{b \rightarrow s \ell ^+ \ell ^-}}$$\end , 2019, The European Physical Journal C.

[44]  Christoph Englert,et al.  Higgs phenomenology as a probe of sterile neutrinos , 2019 .

[45]  J. M. Butterworth,et al.  LHC constraints on a B − L gauge model using Contur , 2018, Journal of High Energy Physics.

[46]  Roy Williams,et al.  The LIGO Open Science Center , 2014, 1410.4839.

[47]  Bruce Yabsley,et al.  Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum , 2019, Journal of High Energy Physics.

[48]  Tilman Plehn,et al.  The gauge-Higgs legacy of the LHC Run I , 2016 .

[49]  Patrick J. Fox,et al.  Dark Matter benchmark models for early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum , 2015, Physics of the Dark Universe.

[50]  Bruce Yabsley,et al.  Measurements of Higgs boson properties in the diphoton decay channel with 36  fb−1 of pp collision data at s=13  TeV with the ATLAS detector , 2018, Physical Review D.

[51]  Wei Xue,et al.  Serendipity in dark photon searches , 2018, Journal of High Energy Physics.

[52]  F. Maltoni,et al.  Top-quark electroweak interactions at high energy , 2019, Journal of High Energy Physics.

[53]  C. Grojean,et al.  The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.

[54]  M. White,et al.  GAMBIT and its application in the search for physics Beyond the Standard Model , 2019, 1912.04079.

[55]  Lukas Heinrich,et al.  HEPData: a repository for high energy physics data , 2017, ArXiv.

[56]  S. Y. Shim,et al.  Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector , 2016 .

[57]  Search for supersymmetry in events with at least one soft lepton, low jet multiplicity, and missing transverse momentum in proton-proton collisions at s=13 TeV , 2017 .

[58]  A. Roeck,et al.  Likelihood analysis of the pMSSM11 in light of LHC 13-TeV data , 2017, The European Physical Journal C.

[59]  A. Roeck,et al.  Likelihood analysis of the sub-GUT MSSM in light of LHC 13-TeV data , 2017, 1711.00458.

[61]  S. Khalil,et al.  Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report , 2012, 1203.1488.

[62]  P. Bechtle,et al.  HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC , 2013, 1311.0055.

[63]  F. Maltoni,et al.  A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector , 2019, Journal of High Energy Physics.

[64]  T. Hurth,et al.  Direct determination of Wilson coefficients using B0 → K∗0μ+μ− decays , 2017, 1708.04474.

[65]  Search prospects for dark-photons decaying to displaced collimated jets of muons at HL-LHC The ATLAS Collaboration , 2019 .

[66]  Sabine Kraml,et al.  LHC limits on gluinos and squarks in the minimal Dirac gaugino model , 2018, Proceedings of ALPS 2019 An Alpine LHC Physics Summit — PoS(ALPS2019).

[67]  Johannes Bellm,et al.  Herwig 7.0/Herwig++ 3.0 release note , 2015, 1512.01178.

[68]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[69]  K. Petridis,et al.  An empirical model to determine the hadronic resonance contributions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} , 2017, The European Physical Journal C.

[70]  Zoltan Ligeti,et al.  Das ist der HAMMER: consistent new physics interpretations of semileptonic decays , 2020, The European Physical Journal C.

[71]  F. Mahmoudi,et al.  Update on the b→s anomalies , 2019, Physical Review D.

[72]  J. M. Butterworth,et al.  Collider constraints on Z′ models for neutral current B-anomalies , 2019, Journal of High Energy Physics.

[73]  M. Pierini,et al.  HEPfit: a code for the combination of indirect and direct constraints on high energy physics models , 2019, The European Physical Journal C.

[74]  Cyril Hugonie,et al.  Prompt signals and displaced vertices in sparticle searches for next-to-minimal gauge-mediated supersymmetric models , 2016, 1606.03099.

[75]  L. Lonnblad,et al.  Robust Independent Validation of Experiment and Theory: Rivet version 3 , 2019 .

[76]  A. Tripathee,et al.  Exposing the QCD Splitting Function with CMS Open Data. , 2017, Physical review letters.

[77]  Jonathan M. Cornell,et al.  Combined collider constraints on neutralinos and charginos , 2018, The European Physical Journal C.

[78]  J. Virto,et al.  Addendum to: Emerging patterns of New Physics with and without Lepton Flavour Universal contributions , 2019, The European Physical Journal. C, Particles and Fields.

[79]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[80]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[81]  P. Catastini,et al.  Measurement of dijet cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector , 2013, Journal of High Energy Physics.

[82]  K. Cranmer,et al.  HistFactory: A tool for creating statistical models for use with RooFit and RooStats , 2012 .

[83]  Jong Soo Kim,et al.  CheckMATE 2: From the model to the limit , 2016, Comput. Phys. Commun..

[84]  Chris Wymant,et al.  Designing and recasting LHC analyses with MadAnalysis 5 , 2014, 1405.3982.

[85]  David London,et al.  The B anomalies and new physics in b → se+e− , 2019, Physics Letters B.

[86]  Bruce Yabsley,et al.  Search for squarks and gluinos in final states with hadronically decaying τ -leptons, jets, and missing transverse momentum using pp collisions at s =13 TeV with the ATLAS detector , 2019 .

[87]  Zoltan Ligeti,et al.  New Predictions for Λ_{b}→Λ_{c} Semileptonic Decays and Tests of Heavy Quark Symmetry. , 2018, Physical review letters.

[88]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[89]  Farvah Mahmoudi,et al.  SuperIso v3.0, flavor physics observables calculations: extension to NMSSM , 2009, Comput. Phys. Commun..

[90]  Loic Quertenmont,et al.  Simplified models for exotic BSM searches , 2015, 1509.00473.

[91]  Markus Klute,et al.  Opportunities and challenges of Standard Model production cross section measurements in proton-proton collisions at √s=8 TeV using CMS Open Data , 2019, Journal of Instrumentation.

[92]  Beranger Dumont,et al.  Lilith: a tool for constraining new physics from Higgs measurements , 2015, 1502.04138.

[93]  Bruce Yabsley,et al.  Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in s=13 TeV pp collisions with the ATLAS detector , 2018 .

[94]  Richard Loveless,et al.  Search for decays , 2012 .

[95]  Georg Weiglein,et al.  HiggsBounds: Confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron , 2008, Comput. Phys. Commun..

[96]  Bruce Yabsley,et al.  Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum at √s=13 TeV with the ATLAS detector , 2019 .

[97]  David J. Miller,et al.  Handbook of LHC Higgs Cross Sections: 3. Higgs Properties , 2013, 1307.1347.

[98]  Benjamin Fuks,et al.  Confronting new physics theories to LHC data with MADANALYSIS 5 , 2018, International Journal of Modern Physics A.

[99]  Andreas Weiler,et al.  Fastlim: a fast LHC limit calculator , 2014, The European Physical Journal C.

[100]  Sezen Sekmen,et al.  CutLang: a cut-based HEP analysis description language and runtime interpreter , 2019, Journal of Physics: Conference Series.

[101]  Sabine Kraml,et al.  Constraining new physics from Higgs measurements with Lilith: update to LHC Run 2 results , 2019, SciPost Physics.

[102]  Scoap,et al.  Search for triboson W±W±W∓ production in pp collisions at s=8 TeV with the ATLAS detector , 2017 .

[103]  John Ellis,et al.  Updated global SMEFT fit to Higgs, diboson and electroweak data , 2018, Journal of High Energy Physics.

[104]  Cern İşbirliği Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum at $\sqrt{s}=13\text{}\text{}\mathrm{TeV}$ with the ATLAS detector , 2019 .

[105]  Patrick T. Komiske,et al.  Exploring the space of jets with CMS open data , 2019, Physical Review D.

[106]  Alexander Mück,et al.  Interference effects in dilepton resonance searches for Z′ bosons and dark matter mediators , 2019 .

[107]  J. Caudron,et al.  Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector , 2017, Journal of High Energy Physics.

[108]  Csaba Balazs,et al.  Les Houches 2011: physics at TeV colliders , 2012 .

[109]  Wei Xue,et al.  Dark photons from charm mesons at LHCb , 2015, 1509.06765.

[110]  Atlas Collaboration,et al.  Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum , 2019, Journal of High Energy Physics.

[111]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[112]  Simplified likelihood for the re-interpretation of public CMS results , 2017 .

[113]  Minho Son,et al.  Anomalous triple gauge couplings in the effective field theory approach at the LHC , 2016, 1609.06312.

[114]  Andy Buckley,et al.  Fast simulation of detector effects in Rivet , 2019, SciPost Physics.

[115]  Jay Armas,et al.  Viscoelastic hydrodynamics and holography , 2019, Journal of High Energy Physics.

[117]  Frank Taylor,et al.  A search for prompt lepton-jets in pp collisions at √s = 8 TeV with the ATLAS detector , 2016 .

[118]  Marcia Begalli,et al.  Measurement of detector-corrected observables sensitive to theanomalous production of events with jets and large missingtransverse momentum in pp collisions at √s = 13 TeV using theATLAS detector , 2017 .

[119]  C Bozzi,et al.  Measurement of the Ratio of the B^{0}→D^{*-}τ^{+}ν_{τ} and B^{0}→D^{*-}μ^{+}ν_{μ} Branching Fractions Using Three-Prong τ-Lepton Decays. , 2017, Physical review letters.

[120]  A. De Roeck,et al.  Global analysis of dark matter simplified models with leptophobic spin-one mediators using MasterCode , 2019, The European Physical Journal C.

[121]  Ashutosh Kumar Alok,et al.  Continuing search for new physics in b → sμμ decays: two operators at a time , 2019, Journal of High Energy Physics.

[122]  Roberto Contino,et al.  Model-independent bounds on a light Higgs , 2012, 1202.3415.

[123]  Federico Ambrogi,et al.  On the coverage of the pMSSM by simplified model results , 2017, The European Physical Journal C.

[124]  C Bozzi,et al.  Search for Dark Photons Produced in 13 TeV pp Collisions. , 2017, Physical review letters.

[125]  Benjamin Fuks,et al.  Simplified fast detector simulation in MadAnalysis 5 , 2020, The European Physical Journal C.

[126]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[127]  Wei Xue,et al.  Searching in CMS open data for dimuon resonances with substantial transverse momentum , 2019, Physical Review D.

[128]  Alexander Belyaev,et al.  XQCAT: eXtra Quark Combined Analysis Tool , 2014, Comput. Phys. Commun..

[129]  P. Gras,et al.  Les Houches 2015: Physics at TeV colliders - new physics working group report , 2016, 1605.02684.

[130]  Wei Xue,et al.  Jet Substructure Studies with CMS Open Data , 2017, 1704.05842.

[131]  C. Rogan,et al.  ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods , 2017, The European Physical Journal C.

[132]  Bruce Yabsley,et al.  Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb−1 of proton-proton collision data at s=13 TeV , 2019 .

[133]  Hoang Dai Nghia Nguyen,et al.  Search for heavy charged long-lived particles in proton – proton collisions at s = 13 TeVvusing an ionisation measurement with the ATLAS detector , 2018 .

[134]  Oscar Stål,et al.  HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC , 2013, 1305.1933.

[135]  Sezen Sekmen,et al.  CutLang: A Particle Physics Analysis Description Language and Runtime Interpreter , 2018, Comput. Phys. Commun..

[136]  M. Kelsey,et al.  Test of lepton flavor universality by the measurement of the branching fraction using three-prong decays , 2017, 1711.02505.

[137]  Bruce Yabsley,et al.  Search for high-mass dilepton resonances using 139 fb−1 of pp collision data collected at √s=13 TeV with the ATLAS detector , 2019 .

[138]  Wei Xue,et al.  Proposed Inclusive Dark Photon Search at LHCb. , 2016, Physical review letters.

[139]  Joel Closier,et al.  Measurement of the shape of the Λb0→Λc+μ−ν¯μ differential decay rate , 2017 .

[140]  M. Kadastik,et al.  Searches for new physics: Les Houches recommendations for the presentation of LHC results , 2012, 1203.2489.

[141]  Bruce Yabsley,et al.  Searches for electroweak production of supersymmetric particles with compressed mass spectra in √s = 13 TeV pp collisions with the ATLAS detector , 2020 .

[142]  Jihyun Bhom,et al.  HEPLike: An open source framework for experimental likelihood evaluation , 2020, Comput. Phys. Commun..

[143]  Hidetoshi Otono,et al.  Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in s=13 TeV pp collisions with the ATLAS detector , 2017 .

[144]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[145]  Harri Hirvonsalo,et al.  REANA: A System for Reusable Research Data Analyses , 2019, EPJ Web of Conferences.

[146]  Sabine Kraml,et al.  SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry , 2014, The European Physical Journal C.

[147]  Bruce Yabsley,et al.  Search for direct stau production in events with two hadronic τ-leptons in s =13 TeV pp collisions with the ATLAS detector , 2020 .

[148]  Matthias Schott,et al.  Testing non-standard sources of parity violation in jets at the LHC, trialled with CMS Open Data , 2019, Journal of High Energy Physics.

[149]  Scoap Test of lepton universality with B 0 → K *0 ℓ + ℓ − decays , 2017 .

[150]  Stony Brook University,et al.  Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider , 2019, Journal of Physics G: Nuclear and Particle Physics.

[151]  Andrea Wulzer,et al.  Robust collider limits on heavy-mediator Dark Matter , 2015, 1502.04701.

[152]  Veronica Sanz,et al.  The effective Standard Model after LHC Run I , 2014, 1410.7703.

[153]  Jong Soo Kim,et al.  A framework to create customised LHC analyses within CheckMATE , 2015, Comput. Phys. Commun..

[154]  Jonathan M. Cornell,et al.  Global fits of GUT-scale SUSY models with GAMBIT , 2017, The European Physical Journal C.

[155]  Farvah Mahmoudi,et al.  SuperIso v2.3: A program for calculating flavor physics observables in supersymmetry , 2008, Comput. Phys. Commun..

[156]  Tilman Plehn,et al.  The gauge-Higgs legacy of the LHC Run I , 2016, SciPost Physics.