RATIR Follow-up of LIGO/Virgo Gravitational Wave Events

Recently we have witnessed the first multi-messenger detection of colliding neutron stars through Gravitational Waves (GWs) and Electromagnetic (EM) waves (GW170817), thanks to the joint efforts of LIGO/Virgo and Space/Ground-based telescopes. In this paper, we report on the RATIR followup observation strategies and show the results for the trigger G194575. This trigger is not of astrophysical interest; however, is of great interests to the robust design of a followup engine to explore large sky error regions. We discuss the development of an image-subtraction pipeline for the 6-color, optical/NIR imaging camera RATIR. Considering a two band ($i$ and $r$) campaign in the Fall of 2015, we find that the requirement of simultaneous detection in both bands leads to a factor $\sim$10 reduction in false alarm rate, which can be further reduced using additional bands. We also show that the performance of our proposed algorithm is robust to fluctuating observing conditions, maintaining a low false alarm rate with a modest decrease in system efficiency that can be overcome utilizing repeat visits. Expanding our pipeline to search for either optical or NIR detections (3 or more bands), considering separately the optical $riZ$ and NIR $YJH$ bands, should result in a false alarm rate $\approx 1\%$ and an efficiency $\approx 90\%$. RATIR's simultaneous optical/NIR observations are expected to yield about one candidate transient in the vast 100 $\mathrm{deg^2}$ LIGO error region for prioritized followup with larger aperture telescopes.

[1]  E. Phinney The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .

[2]  M. Rees,et al.  Relativistic fireballs: energy conversion and time-scales , 1992 .

[3]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[4]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[5]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[6]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[7]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[8]  Gamma-ray bursts and the fireball model , 1998, astro-ph/9810256.

[9]  A. J. Connolly,et al.  Simultaneous Multicolor Detection of Faint Galaxies in the Hubble Deep Field , 1998, astro-ph/9811086.

[10]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[11]  Bing Zhang,et al.  Jet Breaks in Short Gamma-Ray Bursts. II. The Collimated Afterglow of GRB 051221A , 2006 .

[12]  Ehud Nakar,et al.  Short-hard gamma-ray bursts , 2007 .

[13]  William H. Lee,et al.  The Progenitors of Short Gamma-Ray Bursts , 2007 .

[14]  D. L. Starr,et al.  OBSERVATIONS OF THE NAKED-EYE GRB 080319B: IMPLICATIONS OF NATURE'S BRIGHTEST EXPLOSION , 2008, 0803.3215.

[15]  Wei-Tou Ni Dark energy, co-evolution of massive black holes with galaxies, and ASTROD-GW , 2010 .

[16]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[17]  Samaya Nissanke,et al.  EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS , 2009, 0904.1017.

[18]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[19]  William H. Lee,et al.  ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.

[20]  Miguel A. Aloy,et al.  THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS , 2011, 1101.4298.

[21]  V. S. Dhillon,et al.  A list of galaxies for gravitational wave searches , 2011, 1103.0695.

[22]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[23]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[24]  Leonid N. Georgiev,et al.  Automation of the OAN/SPM 1.5-meter Johnson telescope for operations with RATIR , 2012, Other Conferences.

[25]  Alejandro Farah,et al.  First Light with RATIR: An Automated 6-band Optical/NIR Imaging Camera , 2012, Other Conferences.

[26]  E. Nakar,et al.  The electromagnetic signals of compact binary mergers , 2012, 1204.6242.

[27]  John A. Peacock,et al.  TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY , 2013, 1311.5246.

[28]  D. Holz,et al.  Gamma-ray-burst beaming and gravitational-wave observations. , 2012, Physical review letters.

[29]  B. Bouhou,et al.  Colloquium: Multimessenger astronomy with gravitationalwaves and high-energy neutrinos , 2012, 1203.5192.

[30]  S. E. Persson,et al.  DEMOGRAPHICS OF THE GALAXIES HOSTING SHORT-DURATION GAMMA-RAY BURSTS , 2013, 1302.3221.

[31]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[32]  S. Márka,et al.  How gravitational-wave observations can shape the gamma-ray burst paradigm , 2012, 1212.2289.

[33]  Ilya Mandel,et al.  UTILITY OF GALAXY CATALOGS FOR FOLLOWING UP GRAVITATIONAL WAVES FROM BINARY NEUTRON STAR MERGERS WITH WIDE-FIELD TELESCOPES , 2013, 1312.2077.

[34]  Imre Bartos,et al.  GALAXY SURVEY ON THE FLY: PROSPECTS OF RAPID GALAXY CATALOGING TO AID THE ELECTROMAGNETIC FOLLOW-UP OF GRAVITATIONAL WAVE OBSERVATIONS , 2014, 1410.0677.

[35]  N. Butler,et al.  UNCOVERING THE INTRINSIC VARIABILITY OF GAMMA-RAY BURSTS , 2014, 1403.4254.

[36]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants – I. The impact of r-process nucleosynthesis , 2013, 1307.2939.

[37]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[38]  William H. Lee,et al.  IDENTIFYING HIGH-REDSHIFT GAMMA-RAY BURSTS WITH RATIR , 2013, 1312.3967.

[39]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[40]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[41]  N. Butler,et al.  THE ENERGY DEPENDENCE OF GRB MINIMUM VARIABILITY TIMESCALES , 2015, 1501.05948.

[42]  Mansi M. Kasliwal,et al.  GALAXY STRATEGY FOR LIGO-VIRGO GRAVITATIONAL WAVE COUNTERPART SEARCHES , 2015, 1508.03608.

[43]  M. Sullivan,et al.  THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.

[44]  Stefano Covino,et al.  THE LIGHT CURVE OF THE MACRONOVA ASSOCIATED WITH THE LONG–SHORT BURST GRB 060614 , 2015, 1507.07206.

[45]  A. Lien,et al.  AN ACHROMATIC BREAK IN THE AFTERGLOW OF THE SHORT GRB 140903A: EVIDENCE FOR A NARROW JET , 2016, 1605.03573.

[46]  Nicolas A. Pereyra,et al.  GW150914: FIRST SEARCH FOR THE ELECTROMAGNETIC COUNTERPART OF A GRAVITATIONAL-WAVE EVENT BY THE TOROS COLLABORATION , 2016, 1607.07850.

[47]  M. Branchesi Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays , 2016 .

[48]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[49]  B. Yanny,et al.  A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914 , 2016, 1602.04198.

[50]  E. Troja,et al.  XMM-NEWTON SLEW SURVEY OBSERVATIONS OF THE GRAVITATIONAL WAVE EVENT GW150914 , 2016, 1603.06585.

[51]  B. Gibson,et al.  Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914 , 2016, 1602.04156.

[52]  Philip Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[53]  B.Sbarufatti,et al.  Swift follow-up of the gravitational wave source GW150914 , 2016, 1602.03868.

[54]  Umaa Rebbapragada,et al.  iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914 , 2016, 1602.08764.

[55]  D Huet,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. , 2016, Physical review letters.

[56]  T. Piran,et al.  The Macronova in GRB 050709 and the GRB-macronova connection , 2016, Nature Communications.

[57]  P. N. Bhat,et al.  FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914 , 2016, 1602.03920.

[58]  M. Ruiz,et al.  BINARY NEUTRON STAR MERGERS: A JET ENGINE FOR SHORT GAMMA-RAY BURSTS , 2016, The astrophysical journal. Letters.

[59]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017 .

[60]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.