Crack propagation modelling using an advanced remeshing technique

The modelling of a crack propagation through a finite element mesh is of prime importance in fracture mechanics. We propose here a solution based on an advanced remeshing technique. A fully automatic remesher enables us to deal with multiple boundaries and multiple materials. The propagation of the crack is achieved with both remeshing and nodal relaxation. A maximal normal stress criterion is used to compute the crack direction. Several tools are developed and presented to obtain accurate results at the crack tip: evolving mesh refinement, crack tip finite elements, ring of elements surrounding the crack. Finally, several applications are presented to show the robustness of this technique.

[1]  J. Hancock,et al.  Constraint and Toughness Parameterized by T , 1993 .

[2]  J. Rice,et al.  Plane strain deformation near a crack tip in a power-law hardening material , 1967 .

[3]  M. Rashid The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis , 1998 .

[4]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[5]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[6]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[7]  John W. Hutchinson,et al.  Singular behaviour at the end of a tensile crack in a hardening material , 1968 .

[8]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[9]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[10]  S. K. Maiti,et al.  Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field , 1984 .

[11]  Silvio Valente,et al.  Size effects in the mixed mode crack propagation: Softening and snap-back analysis , 1990 .

[12]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[13]  Ahmed Elouard Etude numerique par elements finis de la fissuration avec remaillage automatique. Application a la mecanique des chaussees , 1993 .

[14]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[15]  Y. Chastel,et al.  An elastic‐viscoplastic finite element model for multimaterials , 1998 .

[16]  G. Sih,et al.  Fracture mechanics applied to engineering problems-strain energy density fracture criterion , 1974 .

[17]  X. Suo,et al.  Analyse mathématique et numérique de la propagation des fissures par le modèle de multi-couronnes , 1990 .

[18]  Guandong Wang,et al.  Two Parameter Fracture Mechan-ics: Theory and Applications , 1993 .