Imputed genomes of historical horses provide insights into modern breeding

[1]  Benjamin S. Arbuckle,et al.  The genomic history and global expansion of domestic donkeys , 2022, Science.

[2]  O. Madsen,et al.  Imputation of Ancient Whole Genome Sus scrofa DNA Introduces Biases Toward Main Population Components in the Reference Panel , 2022, Frontiers in Genetics.

[3]  E. Hill,et al.  Inbreeding depression and the probability of racing in the Thoroughbred horse , 2022, Proceedings of the Royal Society B.

[4]  L. Orlando,et al.  Assessing the impact of USER‐treatment on hyRAD capture applied to ancient DNA , 2022, Molecular ecology resources.

[5]  Mattias Jakobsson,et al.  An empirical evaluation of genotype imputation of ancient DNA , 2021, bioRxiv.

[6]  M. Mienaltowski,et al.  First reported case of fragile foal syndrome type 1 in the Thoroughbred caused by PLOD1 c.2032G>A. , 2021, Equine Veterinary Journal.

[7]  T. Kalbfleisch,et al.  Genetics of Thoroughbred Racehorse Performance. , 2021, Annual review of animal biosciences.

[8]  M. A. Anisimov,et al.  The origins and spread of domestic horses from the Western Eurasian steppes , 2021, Nature.

[9]  J. Krause,et al.  Performance and automation of ancient DNA capture with RNA hyRAD probes , 2021, Molecular ecology resources.

[10]  C. Warinner,et al.  Ancient DNA analysis , 2021, Nature Reviews Methods Primers.

[11]  L. Orlando,et al.  Heterogeneous Hunter-Gatherer and Steppe-Related Ancestries in Late Neolithic and Bell Beaker Genomes from Present-Day France , 2021, Current Biology.

[12]  T. Kivisild,et al.  Evaluating genotype imputation pipeline for ultra-low coverage ancient genomes , 2020, Scientific Reports.

[13]  J. Petersen,et al.  Mandibulofacial Dysostosis Attributed to a Recessive Mutation of CYP26C1 in Hereford Cattle , 2020, Genes.

[14]  L. Orlando The Evolutionary and Historical Foundation of the Modern Horse: Lessons from Ancient Genomics. , 2020, Annual review of genetics.

[15]  M. Hirschfeld,et al.  Skin exhibits of Dark Ronald XX are homozygous wild type at the Warmblood fragile foal syndrome causative missense variant position in lysyl hydroxylase gene PLOD1. , 2020, Animal genetics.

[16]  Donald C. Miller,et al.  An Independent Locus Upstream of ASIP Controls Variation in the Shade of the Bay Coat Colour in Horses , 2020, Genes.

[17]  Marine Poullet,et al.  Assessing DNA Sequence Alignment Methods for Characterizing Ancient Genomes and Methylomes , 2020, Frontiers in Ecology and Evolution.

[18]  M. Hewicker-Trautwein,et al.  Hanoverian F/W-line contributes to segregation of Warmblood Fragile Foal Syndrome type 1 variant PLOD1:c.2032G>A in Warmblood horses. , 2020, Equine veterinary journal.

[19]  L. Orlando,et al.  Animal domestication in the era of ancient genomics , 2020, Nature Reviews Genetics.

[20]  M. McCue,et al.  Equine recombination map updated to EquCab3.0. , 2019, Animal genetics.

[21]  C. Rauch,et al.  A Mechanogenetic Model of Exercise-Induced Pulmonary Haemorrhage in the Thoroughbred Horse , 2019, Genes.

[22]  L. Orlando,et al.  Origin and Evolution of Deleterious Mutations in Horses , 2019, Genes.

[23]  Arne Ludwig,et al.  Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series , 2019, Cell.

[24]  Ian T. Fiddes,et al.  Improved reference genome for the domestic horse increases assembly contiguity and composition , 2018, Communications Biology.

[25]  Brian L Browning,et al.  A One-Penny Imputed Genome from Next-Generation Reference Panels. , 2018, American journal of human genetics.

[26]  S. Ho,et al.  Founder-specific inbreeding depression affects racing performance in Thoroughbred horses , 2018, Scientific Reports.

[27]  Arne Ludwig,et al.  Ancient genomes revisit the ancestry of domestic and Przewalski’s horses , 2018, Science.

[28]  D. Balding,et al.  Latin Americans show wide-spread Converso ancestry and imprint of local Native ancestry on physical appearance , 2018, Nature Communications.

[29]  Kari Stefansson,et al.  Graphtyper enables population-scale genotyping using pangenome graphs , 2017, Nature Genetics.

[30]  Arne Ludwig,et al.  Ancient genomic changes associated with domestication of the horse , 2017, Science.

[31]  J. Albright,et al.  Genome‐wide association mapping of heritable temperament variation in the Tennessee Walking Horse , 2016, Genes, brain, and behavior.

[32]  L. Orlando,et al.  Comparing the performance of three ancient DNA extraction methods for high‐throughput sequencing , 2016, Molecular ecology resources.

[33]  Stinus Lindgreen,et al.  AdapterRemoval v2: rapid adapter trimming, identification, and read merging , 2016, BMC Research Notes.

[34]  F. Sato,et al.  Evidence for the effect of serotonin receptor 1A gene (HTR1A) polymorphism on tractability in Thoroughbred horses. , 2016, Animal genetics.

[35]  Brian L Browning,et al.  Genotype Imputation with Millions of Reference Samples. , 2016, American journal of human genetics.

[36]  D. Reich,et al.  Genome-wide patterns of selection in 230 ancient Eurasians , 2015, Nature.

[37]  M. Slatkin,et al.  Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments , 2015, Proceedings of the National Academy of Sciences.

[38]  B. Peter,et al.  Admixture, Population Structure, and F-Statistics , 2015, Genetics.

[39]  M. Slatkin,et al.  Evolutionary Genomics and Conservation of the Endangered Przewalski’s Horse , 2015, Current Biology.

[40]  Olivier Gascuel,et al.  FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program , 2015, Molecular biology and evolution.

[41]  Swapan Mallick,et al.  Partial uracil–DNA–glycosylase treatment for screening of ancient DNA , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  M. Hofreiter,et al.  Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  Leif Andersson,et al.  Prehistoric genomes reveal the genetic foundation and cost of horse domestication , 2014, Proceedings of the National Academy of Sciences.

[44]  Anders Albrechtsen,et al.  ANGSD: Analysis of Next Generation Sequencing Data , 2014, BMC Bioinformatics.

[45]  D. Bates,et al.  Finding patients before they crash: the next major opportunity to improve patient safety , 2014, BMJ quality & safety.

[46]  M. Jakobsson,et al.  Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal , 2014, Proceedings of the National Academy of Sciences.

[47]  Arne Ludwig,et al.  Evidence for a Retroviral Insertion in TRPM1 as the Cause of Congenital Stationary Night Blindness and Leopard Complex Spotting in the Horse , 2013, PloS one.

[48]  Philip L. F. Johnson,et al.  mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters , 2013, Bioinform..

[49]  E. G. Cothran,et al.  Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data , 2013, PloS one.

[50]  Swapan Mallick,et al.  Ancient Admixture in Human History , 2012, Genetics.

[51]  J. Mezey,et al.  Four Loci Explain 83% of Size Variation in the Horse , 2012, PloS one.

[52]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[53]  D. Falush,et al.  Inference of Population Structure using Dense Haplotype Data , 2012, PLoS genetics.

[54]  L. Andersson,et al.  The genetic origin and history of speed in the Thoroughbred racehorse , 2012, Nature Communications.

[55]  Kenneth Lange,et al.  Enhancements to the ADMIXTURE algorithm for individual ancestry estimation , 2011, BMC Bioinformatics.

[56]  T. Tozaki,et al.  A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. , 2010, Animal genetics.

[57]  E. Hill,et al.  Targets of selection in the Thoroughbred genome contain exercise-relevant gene SNPs associated with elite racecourse performance. , 2010, Animal genetics.

[58]  E. Hill,et al.  Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. , 2010, Equine veterinary journal. Supplement.

[59]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[60]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[61]  P. Kelekna The Horse in Human History , 2009 .

[62]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[63]  Joel A. Tarr,et al.  The Horse in the City: Living Machines in the Nineteenth Century , 2007 .

[64]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[65]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[66]  M. Reissmann,et al.  New polymorphism detected in the horse MC1R gene. , 2000, Animal genetics.

[67]  E. Dunnington Przewalski's horse — The history and biology of an endangered species , 1995 .

[68]  B. Mayer International Encyclopedia Of Horse Breeds , 2016 .