Advanced Tools for Damage Detection in Wind Turbines

The paper summarises some advanced damage detection approaches used for Structural Health Monitoring (SHM) and Condition Monitoring (CM) of wind turbine systems. In the signal processing part, recent time-frequency analysis methods will be presented and examples of their application on condition monitoring of gearboxes will be given. In the pattern recognition part, examples of damage detection in blades will be used to introduce different algorithms for novelty detection.

[1]  S. Qian,et al.  Joint time-frequency analysis : methods and applications , 1996 .

[2]  E. Lund,et al.  Structural collapse of a wind turbine blade. Part B: Progressive interlaminar failure models , 2010 .

[3]  Anand Parey,et al.  Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect , 2006 .

[4]  Gabriel Rilling,et al.  Empirical mode decomposition as a filter bank , 2004, IEEE Signal Processing Letters.

[5]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[6]  Keith Worden,et al.  TIME–FREQUENCY ANALYSIS IN GEARBOX FAULT DETECTION USING THE WIGNER–VILLE DISTRIBUTION AND PATTERN RECOGNITION , 1997 .

[7]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[8]  Charles R. Farrar,et al.  Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review , 1996 .

[9]  J. Antoni The spectral kurtosis: a useful tool for characterising non-stationary signals , 2006 .

[10]  W. J. Staszewski,et al.  Application of the Wavelet Transform to Fault Detection in a Spur Gear , 1994 .

[11]  H. M. Teager,et al.  Evidence for Nonlinear Sound Production Mechanisms in the Vocal Tract , 1990 .

[12]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[13]  Simon Braun,et al.  Hilbert transform applications in mechanical vibration, M. Feldman. Wiley, United Kingdom (2011), 320 pp., US $135.00, ISBN: 9780470978276 , 2012 .

[14]  H. Bourlard,et al.  Auto-association by multilayer perceptrons and singular value decomposition , 1988, Biological Cybernetics.

[15]  Petros Maragos,et al.  Energy separation in signal modulations with application to speech analysis , 1993, IEEE Trans. Signal Process..

[16]  Petros Maragos,et al.  A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation , 1994, Signal Process..

[17]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[18]  Ricardo Vigário,et al.  Nonlinear PCA: a new hierarchical approach , 2002, ESANN.

[19]  Gunner Chr. Larsen,et al.  Fundamentals for remote structural health monitoring of wind turbine blades - a preproject , 2002 .

[20]  Yaguo Lei,et al.  A review on empirical mode decomposition in fault diagnosis of rotating machinery , 2013 .

[21]  C. P. Debel,et al.  Full scale testing of wind turbine blade to failure - flapwise loading , 2004 .

[22]  Norden E. Huang,et al.  On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..

[23]  S. Qian,et al.  Joint time-frequency analysis , 1999, IEEE Signal Process. Mag..

[24]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[25]  Fulei Chu,et al.  Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography , 2004 .

[26]  C. P. Debel,et al.  Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1) - Summary Report , 2004 .

[27]  Nathalie Japkowicz,et al.  Nonlinear Autoassociation Is Not Equivalent to PCA , 2000, Neural Computation.

[28]  Charles R. Farrar,et al.  Novelty detection under changing environmental conditions , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[29]  Gyuhae Park,et al.  Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing , 2012, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[30]  E. Lund,et al.  Structural collapse of a wind turbine blade. Part A: Static test and equivalent single layered models , 2010 .

[31]  Michael Feldman,et al.  Hilbert Transform Applications in Mechanical Vibration: Feldman/Hilbert Transform Applications in Mechanical Vibration , 2011 .

[32]  Chuan Li,et al.  A generalized synchrosqueezing transform for enhancing signal time-frequency representation , 2012, Signal Process..

[33]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[34]  Gyuhae Park,et al.  Full-scale fatigue tests of CX-100 wind turbine blades. Part II: analysis , 2012, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[35]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  Keith Worden,et al.  EXPERIMENTAL VALIDATION OF A STRUCTURAL HEALTH MONITORING METHODOLOGY: PART II. NOVELTY DETECTION ON A GNAT AIRCRAFT , 2003 .

[37]  Lionel Tarassenko,et al.  Novelty detection for the identification of abnormalities , 2000, Int. J. Syst. Sci..

[38]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.