Global existence and convergence of solutions to gradient systems and applications to Yang-Mills gradient flow

In this monograph, we develop results on global existence and convergence of solutions to abstract gradient flows on Banach spaces for a potential function that obeys the Lojasiewicz-Simon gradient inequality. We prove a Lojasiewicz-Simon gradient inequality for the Yang-Mills energy functional over closed, smooth Riemannian manifolds of arbitrary dimension and apply the resulting framework to prove new results for the gradient flow equation for the Yang-Mills energy functional on a principal bundle, with compact Lie structure group, over a closed, smooth Riemannian manifolds, including the following. If the initial connection is close enough to a local minimum of the Yang-Mills energy functional, in a norm sense when the base manifold has arbitrary dimension or in an energy sense when the base manifold has dimension four, then the Yang-Mills gradient flow exists for all time and converges to a Yang-Mills connection. If the initial connection is allowed to have arbitrary energy but we restrict to the setting of a Hermitian vector bundle over a compact, complex, Hermitian (but not necessarily Kaehler) surface and the initial connection has curvature of type (1,1), then the Yang-Mills gradient flow exists for all time, though bubble singularities may (and in certain cases must) occur in the limit as time tends to infinity.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[3]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[4]  A N Milgram,et al.  Harmonic Forms and Heat Conduction: I: Closed Riemannian Manifolds. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[6]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[7]  Hidehiko Yamabe On a deformation of Riemannian structures on compact manifolds , 1960 .

[8]  Richard S. Palais,et al.  On the Existence of Slices for Actions of Non-Compact Lie Groups , 1961 .

[9]  Felix E. Browder,et al.  On the spectral theory of elliptic differential operators. I , 1961 .

[10]  S. Agmon On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems , 1962 .

[11]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[12]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[13]  矢野 健太郎 Differential geometry on complex and almost complex spaces , 1965 .

[14]  M. Kuranishi New Proof for the Existence of Locally Complete Families of Complex Structures , 1965 .

[15]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[16]  Jürgen Moser,et al.  A rapidly convergent iteration method and non-linear differential equations = II , 1966 .

[17]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[18]  David G. Ebin,et al.  On the space of Riemannian metrics , 1968 .

[19]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[20]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .

[21]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[22]  Haim Brezis,et al.  Semi-linear second-order elliptic equations in L 1 , 1973 .

[23]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[24]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[25]  H. Stewart Generation of analytic semigroups by strongly elliptic operators , 1974 .

[26]  Richard S. Hamilton,et al.  Harmonic Maps of Manifolds with Boundary , 1975 .

[27]  J. Cheeger,et al.  Comparison theorems in Riemannian geometry , 1975 .

[28]  T. Aubin Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire , 1976 .

[29]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[30]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[31]  M. Atiyah,et al.  Self-duality in four-dimensional Riemannian geometry , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  Hiroki Tanabe,et al.  Equations of evolution , 1979 .

[33]  Raymond O. Wells,et al.  Differential analysis on complex manifolds , 1980 .

[34]  H. Lawson,et al.  Stability and isolation phenomena for Yang-Mills fields , 1981 .

[35]  S. Yau,et al.  Proof of the positive mass theorem. II , 1981 .

[36]  J. Sacks,et al.  The Existence of Minimal Immersions of 2-Spheres , 1981 .

[37]  R. Temam Behaviour at Time t=0 of the Solutions of Semi-Linear Evolution Equations. , 1982 .

[38]  Thomas H. Parker Gauge theories on four dimensional Riemannian manifolds , 1982 .

[39]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[40]  Steven Sedlacek A direct method for minimizing the Yang-Mills functional over 4-manifolds , 1982 .

[41]  Karen Uhlenbeck,et al.  Connections withLP bounds on curvature , 1982 .

[42]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[43]  C. Taubes Self-dual Yang-Mills connections on non-self-dual 4-manifolds , 1982 .

[44]  Haim Brezis,et al.  Positive solutions of nonlinear elliptic equations involving critical sobolev exponents , 1983 .

[45]  H. Amann Dual semigroups and second order linear elliptic boundary value problems , 1983 .

[46]  T. Sakai,et al.  On continuity of injectivity radius function , 1983 .

[47]  L. Simon Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .

[48]  S. Donaldson,et al.  A new proof of a theorem of Narasimhan and Seshadri , 1983 .

[49]  D. DeTurck Deforming metrics in the direction of their Ricci tensors , 1983 .

[50]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[51]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[52]  R. Schoen Conformal deformation of a Riemannian metric to constant scalar curvature , 1984 .

[53]  Karen K. Uhlenbeck,et al.  Instantons and Four-Manifolds , 1984 .

[54]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[55]  Takashi Komatsu,et al.  Pseudo-differential operators and Markov processes , 1984 .

[56]  Michael Struwe,et al.  A global compactness result for elliptic boundary value problems involving limiting nonlinearities , 1984 .

[57]  H. Lawson The theory of gauge fields in four dimensions , 1985 .

[58]  K. Deimling Nonlinear functional analysis , 1985 .

[59]  Karen K. Uhlenbeck,et al.  On the existence of hermitian‐yang‐mills connections in stable vector bundles , 1986 .

[60]  A. W. Knapp Representation theory of semisimple groups , 1986 .

[61]  Michael I. Weinstein,et al.  Solitary waves of nonlinear dispersive evolution equations with critical power nonlinearities , 1987 .

[62]  Shôshichi Kobayashi,et al.  Differential geometry of complex vector bundles , 1987 .

[63]  Removable singularities for Yang-Mills connections in higher dimensions , 1987 .

[64]  L. Sadun Continuum Regularized Yang-Mills Theory. , 1987 .

[65]  G. M. Troianiello,et al.  Elliptic Differential Equations and Obstacle Problems , 1987 .

[66]  Thomas H. Parker,et al.  The Riemannian geometry of the Yang-Mills moduli space , 1987 .

[67]  Shinji Fukuhara,et al.  ENERGY OF A KNOT , 1988 .

[68]  E. Bierstone,et al.  Semianalytic and subanalytic sets , 1988 .

[69]  Weak Asymptotical Stability of Yang-Mills' Gradient Flow , 1988 .

[70]  S. Subramanian,et al.  Einstein-Hermitian connections on principal bundles and stability. , 1988 .

[71]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[72]  J. Jost Nonlinear Methods in Riemannian and Kählerian Geometry , 1988 .

[73]  Karen K. Uhlenbeck,et al.  Solutions to Yang-Mills equations that are not self-dual. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[74]  On Asymptotic Stability of Yang-Mills' Gradient Flow , 1989 .

[75]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[76]  T. K. Carne HEAT KERNELS AND SPECTRAL THEORY: (Cambridge Tracts in Mathematics 92) , 1990 .

[77]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[78]  V. Vespri Analytic semigroups generated by ultraweak operators , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[79]  L. Sadun,et al.  Non-self-dual Yang-Mills connections with nonzero Chern number , 1991 .

[80]  Michael Taylor,et al.  Pseudodifferential Operators and Nonlinear PDE , 1991 .

[81]  F. Béthuel,et al.  The approximation problem for Sobolev maps between two manifolds , 1991 .

[82]  Kung-Ching Chang,et al.  A Result on the Global Existence for Heat Flows of Harmonic Maps from D 2 into S 2 , 1991 .

[83]  G. Blasio Analytic semigroups generated by elliptic operators in L¹ and parabolic equations , 1991 .

[84]  Bennett Chow,et al.  The yamabe flow on locally conformally flat manifolds with positive ricci curvature , 1992 .

[85]  Gil Bor Yang-Mills fields which are not self-dual , 1992 .

[86]  J. R̊ade On the Yang-Mills heat equation in two and three dimensions. , 1992 .

[87]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[88]  Georgios Daskalopoulos The topology of the space of stable bundles on a compact Riemann surface , 1992 .

[89]  Rugang Ye,et al.  Finite-time blow-up of the heat flow of harmonic maps from surfaces , 1992 .

[90]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[91]  Thomas H. Parker,et al.  Pseudo-holomorphic maps and bubble trees , 1993 .

[92]  A. Bahri Another proof of the Yamabe conjecture for locally conformally flat manifolds , 1993 .

[93]  T. Ilmanen Elliptic regularization and partial regularity for motion by mean curvature , 1994 .

[94]  J. Morgan,et al.  Smooth Four-Manifolds and Complex Surfaces , 1994 .

[95]  H. Naito Finite time blowing-up for the Yang-Mills gradient flow in higher dimensions , 1994 .

[96]  R. Ye Global existence and convergence of Yamabe flow , 1994 .

[97]  A. Teleman,et al.  The Kobayashi-Hitchin correspondence , 1995 .

[98]  H. Naito,et al.  Global solution for the Yang-Mills gradient flow on 4-manifolds , 1995, Nagoya Mathematical Journal.

[99]  A. Koshelev Regularity Problem for Quasilinear Elliptic and Parabolic Systems , 1995 .

[100]  P. Kronheimer,et al.  Embedded surfaces and the structure of Donaldson's polynomial invariants , 1995 .

[101]  G. Buck,et al.  A simple energy function for knots , 1995 .

[102]  A. Schlatter Global existence of the Yang-Mills flow in four dimensions. , 1996 .

[103]  N. Krylov,et al.  Lectures on Elliptic and Parabolic Equations in Holder Spaces , 1996 .

[104]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[105]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[106]  P. Topping The harmonic map heat flow from surfaces , 1996 .

[107]  Heat Kernel Lower Bounds on Riemannian Manifolds Using the Old Ideas of Nash , 1996 .

[108]  Existence of the Self-Similar Solutions in the Heat Flow of Harmonic Maps , 1997 .

[109]  John William Neuberger,et al.  Sobolev gradients and differential equations , 1997 .

[110]  A. Haraux,et al.  Convergence of Solutions of Second-Order Gradient-Like Systems with Analytic Nonlinearities , 1998 .

[111]  Ya-Zhe Chen,et al.  Second Order Elliptic Equations and Elliptic Systems , 1998 .

[112]  M. Jendoubi Convergence of Global and Bounded Solutions of the Wave Equation with Linear Dissipation and Analytic Nonlinearity , 1998 .

[113]  Piotr Rybka,et al.  Convergence of solutions to the equation of quasi-static approximation of viscoelasticity with capillarity , 1998 .

[114]  R. Friedman Algebraic Surfaces and Holomorphic Vector Bundles , 1998 .

[115]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[116]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[117]  Stabilization of positive solutions for analytic gradient-like systems , 2000 .

[118]  J. Grotowski Finite time blow-up for the Yang-Mills heat flow in higher dimensions , 2001 .

[119]  Ralph Chill,et al.  On the Łojasiewicz–Simon gradient inequality , 2003 .

[120]  F. Hélein Harmonic maps , conservation laws and moving frames Second edition , 2002 .

[121]  G. Taylor A topological existence proof for SO(n)-anti-self-dual connections , 2002 .

[122]  ASYMPTOTIC BEHAVIOR OF YANG-MILLS FLOW IN HIGHER DIMENSIONS , 2002 .

[123]  The uniqueness of tangent cones for Yang–Mills connections with isolated singularities , 2002, math/0203077.

[124]  Evolution Equations in Scales of Banach Spaces , 2002 .

[125]  R. V. D. Hout On the nonexistence of finite time bubble trees in symmetric harmonic map heat flows from the disk to the 2-sphere , 2003 .

[126]  On the construction of solutions to the Yang-Mills equations in higher dimensions , 2003, math/0302093.

[127]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[128]  Hartmut Schwetlick,et al.  Convergence of the Yamabe flow for ``large'' energies , 2003 .

[129]  Matthias Hieber,et al.  Maximal Lp‐regularity for elliptic operators with VMO‐coefficients , 2003 .

[130]  I. I. Vrabie,et al.  C₀-semigroups and applications , 2003 .

[131]  R. Chill,et al.  Convergence to steady states in asymptotically autonomous semilinear evolution equations , 2003 .

[132]  Alain Haraux,et al.  Rate of decay to equilibrium in some semilinear parabolic equations , 2003 .

[133]  Linear and dynamical stability of Ricci-flat metrics , 2004, math/0410062.

[134]  B. Chow,et al.  The Ricci Flow : An Introduction I , 2013 .

[135]  D. Huybrechts Complex Geometry: An Introduction , 2004 .

[136]  G. Tian,et al.  Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections , 2004 .

[137]  L. Arlotti,et al.  Perturbations of Positive Semigroups with Applications , 2005 .

[138]  Reto Müller Differential Harnack inequalities and the Ricci flow , 2006 .

[139]  Markus Haase,et al.  The Functional Calculus for Sectorial Operators , 2006 .

[140]  Alberto Fiorenza,et al.  Convergence and decay rate to equilibrium of bounded solutions of quasilinear parabolic equations , 2006 .

[141]  Matthias Hieber,et al.  Lp – Lq Estimates for Parabolic Systems in Non‐Divergence Form with VMO Coefficients , 2006 .

[142]  L. Lorenzi,et al.  Analytical Methods for Markov Semigroups , 2006 .

[143]  S. Janson,et al.  Complex interpolation of compact operators: an update , 2006, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics.

[144]  Hamilton-Perelman's Proof of the Poincar\'e Conjecture and the Geometrization Conjecture , 2006, math/0612069.

[145]  Mu-Tao Wang Some recent developments in Lagrangian mean curvature flows , 2011, 1104.3355.

[146]  Zheng Yu ON THE STUDY OF ONE FLOW FOR ASD CONNECTION , 2007 .

[147]  Correction to the paper: Convergence properties of the Yang-Mills flow on Kähler surfaces , 2007 .

[148]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[149]  H. Triebel,et al.  Distributions, Sobolev Spaces, Elliptic Equations , 2007 .

[150]  J. Morgan,et al.  Ricci Flow and the Poincare Conjecture , 2006, math/0607607.

[151]  Min-Chun Hong,et al.  Anti-self-dual connections and their related flow on 4-manifolds , 2008 .

[152]  Geometry of minimal energy Yang-Mills connections , 2008, 0808.0667.

[153]  F. Lin,et al.  The analysis of harmonic maps and their heat flows , 2008 .

[154]  F. Marques,et al.  BLOW-UP PHENOMENA FOR THE YAMABE EQUATION , 2008 .

[155]  A. Pulemotov The Li-Yau-Hamilton Estimate and the Yang-Mills Heat Equation on Manifolds with Boundary , 2008, 0803.1015.

[156]  Morse theory for the space of Higgs bundles , 2006, math/0611113.

[157]  Hao Wu,et al.  Convergence to Equilibrium for Parabolic-Hyperbolic Time-Dependent Ginzburg-Landau-Maxwell Equations , 2008, SIAM J. Math. Anal..

[158]  Yue Wang,et al.  The Coupled Yang–Mills–Higgs flow , 2008 .

[159]  Min-Chun Hong,et al.  Global Existence for the Seiberg-Witten Flow , 2009, 0909.1855.

[160]  J. Streets,et al.  A parabolic flow of pluriclosed metrics , 2009, 0903.4418.

[161]  Alain Haraux,et al.  APPLICATIONS OF THE ŁOJASIEWICZ–SIMON, GRADIENT INEQUALITY TO GRADIENT-LIKE EVOLUTION EQUATIONS , 2009 .

[162]  Morse theory for the space of Higgs G–bundles , 2010, 1002.1108.

[163]  Charles Baker,et al.  The mean curvature flow of submanifolds of high codimension , 2011, 1104.4409.

[164]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[165]  Jean Mawhin,et al.  Origin and evolution of the Palais–Smale condition in critical point theory , 2010 .

[166]  John W. Morgan,et al.  Ricci Flow and Geometrization of 3-Manifolds , 2010 .

[167]  D. Pallara,et al.  Analytic semigroups generated in L1(Ω) by second order elliptic operators via duality methods , 2010 .

[168]  Y. Yang,et al.  Rigidity of the harmonic map heat flow from the sphere to compact Kähler manifolds , 2010 .

[169]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[170]  Song Sun,et al.  On the Kähler-Ricci flow near a Kähler-Einstein metric , 2010 .

[171]  Robert Haslhofer Perelman’s lambda-functional and the stability of Ricci-flat metrics , 2010, 1003.4633.

[172]  Ben Andrews,et al.  Mean curvature flow of Pinched submanifolds to spheres , 2010 .

[173]  A. Neves Finite Time Singularities for Lagrangian Mean Curvature Flow , 2010, 1009.1083.

[174]  八木 厚志 Abstract parabolic evolution equations and their applications , 2010 .

[175]  F. Schulze Uniqueness of compact tangent flows in Mean Curvature Flow , 2011, 1107.4643.

[176]  B. Andrews,et al.  The Ricci Flow in Riemannian Geometry , 2011 .

[177]  Stable Higgs bundles and Hermitian-Einstein metrics on non-K\ , 2011, 1110.3768.

[178]  Vitaly Volpert,et al.  Fredholm theory of elliptic problems in unbounded domains , 2011 .

[179]  Yong Luo Energy identity and removable singularities of maps from a Riemann surface with tension field unbounded in $L^2$ , 2011, 1110.4901.

[180]  Carlo Mantegazza,et al.  Lecture Notes on Mean Curvature Flow , 2011 .

[181]  Jiayu Li,et al.  The gradient flow of Higgs pairs , 2011 .

[182]  M. Bertsch,et al.  ENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS , 2011 .

[183]  Doyoon Kim,et al.  Lp solvability of divergence type parabolic and elliptic systems with partially BMO coefficients , 2011 .

[184]  Resolvent Estimates for Elliptic Systems in Function Spaces of Higher Regularity , 2011 .

[185]  Vladimir Maz’ya,et al.  Sobolev Spaces: with Applications to Elliptic Partial Differential Equations , 2011 .

[186]  L. Jiayu,et al.  Energy identity for the maps from a surface with tension field bounded in Lp , 2012, 1205.2978.

[187]  A. Grigor’yan Heat Kernel and Analysis on Manifolds , 2012 .

[188]  K. Smoczyk,et al.  Mean Curvature Flow in Higher Codimension: Introduction and Survey , 2011, 1104.3222.

[189]  A. Haraux Some applications of the Łojasiewicz gradient inequality , 2012 .

[190]  Hao Wu,et al.  Long-Time Behavior for a Hydrodynamic Model on Nematic Liquid Crystal Flows with Asymptotic Stabilizing Boundary Condition and External Force , 2011, SIAM J. Math. Anal..

[191]  Reto Müller,et al.  Dynamical stability and instability of Ricci-flat metrics , 2013, 1301.3219.

[192]  Hao Wu,et al.  Strong Solutions, Global Regularity, and Stability of a Hydrodynamic System Modeling Vesicle and Fluid Interactions , 2012, SIAM J. Math. Anal..

[193]  Stabilities of homothetically shrinking Yang-Mills solitons , 2014, 1410.5150.

[194]  G. Bellettini,et al.  Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations , 2014 .

[195]  NOTES ON THE EXTENSION OF THE MEAN CURVATURE FLOW , 2014 .

[196]  The gradient structure of the mean curvature flow , 2014 .

[197]  A. Wasserman,et al.  Nonexistence of Shrinkers for the Harmonic Map Flow in Higher Dimensions , 2014, 1404.7381.

[198]  Paweł Biernat Non-self-similar blow-up in the heat flow for harmonic maps in higher dimensions , 2014, 1404.2209.

[199]  The Yang-Mills flow for cylindrical end 4-manifolds , 2016, 1603.00520.

[200]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[201]  Peter B. Gilkey,et al.  The Atiyah-Singer Index Theorem* , 2010 .