Zero vs. ε error in interference channels

Traditional studies of multi-source, multi-terminal interference channels typically allow a vanishing probability of error in communication. Motivated by the study of network coding, this work addresses the task of quantifying the loss in rate when insisting on zero error communication in the context of interference channels.

[1]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[2]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[3]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[4]  Daniel J. Velleman American Mathematical Monthly , 2010 .

[5]  Jirí Sgall,et al.  Bounds on Pairs of Families with Restricted Intersections , 1999, Comb..

[6]  D. E. Daykin,et al.  An inequality for the weights of two families of sets, their unions and intersections , 1978 .

[7]  K. Engel Sperner Theory , 1996 .

[8]  T. Ho,et al.  On Linear Network Coding , 2010 .

[9]  Michael Langberg,et al.  Source coding for dependent sources , 2012, 2012 IEEE Information Theory Workshop.

[10]  Alon Orlitsky,et al.  Zero-Error Information Theory , 1998, IEEE Trans. Inf. Theory.

[11]  Odile Favaron,et al.  On the bipartite independence number of a balanced bipartite graph , 1993, Discret. Math..

[12]  Uriel Feige,et al.  Balanced coloring of bipartite graphs , 2010, J. Graph Theory.

[13]  Michael Langberg,et al.  An Equivalence Between Network Coding and Index Coding , 2012, IEEE Transactions on Information Theory.

[14]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[15]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[16]  Tracey Ho,et al.  On equivalence between network topologies , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[17]  Peter Sanders,et al.  Polynomial time algorithms for multicast network code construction , 2005, IEEE Transactions on Information Theory.

[18]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[19]  Michael Langberg,et al.  Network coding: Is zero error always possible? , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[20]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[21]  Gábor Simonyi,et al.  On write-unidirectional memory codes , 1989, IEEE Trans. Inf. Theory.

[22]  Rudolf Ahlswede,et al.  On the optimal structure of recovering set pairs in lattices: the sandglass conjecture , 1994, Discret. Math..

[23]  Olaf Krafft Problem 10819 , 2000, Am. Math. Mon..

[24]  Alex J. Grant,et al.  On capacity regions of non-multicast networks , 2010, 2010 IEEE International Symposium on Information Theory.

[25]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.

[26]  Ron Holzman,et al.  Cancellative pairs of families of sets , 1995, Eur. J. Comb..

[27]  Tracey Ho,et al.  On the impact of a single edge on the network coding capacity , 2011, 2011 Information Theory and Applications Workshop.

[28]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.