Investigation of antibiofilm activity, antibacterial activity, and mechanistic studies of an amphiphilic peptide against Acinetobacter baumannii.

[1]  Hao Wang,et al.  Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. , 2020, Biomaterials science.

[2]  Ye Zhu,et al.  Imidazole Type Antifungal Drugs Are Effective Colistin Adjuvants That Resensitize Colistin‐Resistant Enterobacteriaceae , 2020, Advanced Therapeutics.

[3]  F. Schreiber,et al.  Polymyxins Bind to the Cell Surface of Unculturable Acinetobacter baumannii and Cause Unique Dependent Resistance , 2020, Advanced science.

[4]  Hai Xu,et al.  Dual Mode of Anti-biofilm Action of G3 against Streptococcus mutans. , 2020, ACS applied materials & interfaces.

[5]  Cheng Cheng,et al.  Rapid and highly sensitive SERS detection of fungicide based on flexible “wash free” metallic textile , 2020 .

[6]  B. Lazzaro,et al.  Antimicrobial peptides: Application informed by evolution , 2020, Science.

[7]  D. Davidson,et al.  Antimicrobial host defence peptides: functions and clinical potential , 2020, Nature Reviews Drug Discovery.

[8]  Wei-Lin Gao,et al.  De Novo Designed Hexadecapeptides Synergize Glycopeptide Antibiotics Vancomycin and Teicoplanin against Pathogenic Klebsiella pneumoniae via Disruption of Cell Permeability and Potential. , 2020, ACS applied bio materials.

[9]  Marlon H. Cardoso,et al.  Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? , 2020, Frontiers in Microbiology.

[10]  Marvin J. Miller,et al.  Antibiotic repurposing: bis-catechol- and mixed ligand (bis-catechol-mono-hydroxamate)-teicoplanin conjugates are active against multidrug resistant Acinetobacter baumannii , 2019, The Journal of Antibiotics.

[11]  C. de la Fuente-Nunez,et al.  Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. , 2019, Biochemistry.

[12]  T. Lu,et al.  Peptide Design Principles for Antimicrobial Applications. , 2019, Journal of molecular biology.

[13]  Wei-Lin Gao,et al.  Phenol‐Soluble‐Modulin‐Inspired Amphipathic Peptides Have Bactericidal Activity against Multidrug‐Resistant Bacteria , 2019, ChemMedChem.

[14]  A. Peleg,et al.  The Mechanisms of Disease Caused by Acinetobacter baumannii , 2019, Front. Microbiol..

[15]  N. Chandra,et al.  Ω76: A designed antimicrobial peptide to combat carbapenem- and tigecycline-resistant Acinetobacter baumannii , 2019, Science Advances.

[16]  T. Lu,et al.  Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. , 2019, Biochimica et biophysica acta. Biomembranes.

[17]  Alison J. Scott,et al.  Small Molecule Potentiation of Gram-Positive Selective Antibiotics against Acinetobacter baumannii. , 2019, ACS infectious diseases.

[18]  N. Kharrat,et al.  The novel cationic cell-penetrating peptide PEP-NJSM is highly active against Staphylococcus epidermidis biofilm. , 2019, International journal of biological macromolecules.

[19]  C. Mant,et al.  De Novo Designed Amphipathic α-Helical Antimicrobial Peptides Incorporating Dab and Dap Residues on the Polar Face To Treat the Gram-Negative Pathogen, Acinetobacter baumannii. , 2019, Journal of medicinal chemistry.

[20]  Wei-Lin Gao,et al.  Boosting the efficacy of anti-MRSA β-lactam antibiotics via an easily accessible, non-cytotoxic and orally bioavailable FtsZ inhibitor. , 2019, European journal of medicinal chemistry.

[21]  Karen G. N. Oshiro,et al.  A Computationally Designed Peptide Derived from Escherichia coli as a Potential Drug Template for Antibacterial and Antibiofilm Therapies. , 2018, ACS infectious diseases.

[22]  R. Bonomo,et al.  New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections , 2018, Antimicrobial Agents and Chemotherapy.

[23]  Yoonkyung Park,et al.  Antibacterial activity and mechanism of action of analogues derived from the antimicrobial peptide mBjAMP1 isolated from Branchiostoma japonicum , 2018, The Journal of antimicrobial chemotherapy.

[24]  A. Beck‐Sickinger,et al.  Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics. , 2018, Bioorganic & medicinal chemistry.

[25]  S. Knight,et al.  Structural basis for Acinetobacter baumannii biofilm formation , 2018, Proceedings of the National Academy of Sciences.

[26]  M. Karami,et al.  Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii , 2018, European Journal of Clinical Microbiology & Infectious Diseases.

[27]  Chong Zhang,et al.  Membrane-Active Amphipathic Peptide WRL3 with in Vitro Antibiofilm Capability and in Vivo Efficacy in Treating Methicillin-Resistant Staphylococcus aureus Burn Wound Infections. , 2017, ACS infectious diseases.

[28]  James C. Collins,et al.  The Current State of Peptide Drug Discovery: Back to the Future? , 2017, Journal of medicinal chemistry.

[29]  Yi Yan Yang,et al.  Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. , 2017, Acta biomaterialia.

[30]  M. Ge,et al.  Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii , 2016, International journal of nanomedicine.

[31]  Robert E W Hancock,et al.  Synthetic antibiofilm peptides. , 2016, Biochimica et biophysica acta.

[32]  Pierre Tufféry,et al.  PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex , 2016, Nucleic Acids Res..

[33]  M. Aguilar,et al.  Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. , 2015, Current topics in medicinal chemistry.

[34]  Y. Shai,et al.  Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. , 2015, The Biochemical journal.

[35]  A. Drake,et al.  Structural contributions to the intracellular targeting strategies of antimicrobial peptides. , 2010, Biochimica et biophysica acta.