Modeling and Processing with Quadric Surfaces

This chapter defines quadric Surfaces or quadrics, and discusses their classifications under different groups of transformations—that is, Euclidean, affine, and projective transformations. Quadric surfaces are surfaces defined by algebraic equations of degree two. It explains why quadrics are widely used in computer-aided geometric design (CAGD). The chapter discusses the rational quadratic parameterization of a whole quadric surface and of a surface patch on a quadric. A simple way to derive a rational quadratic parameterization of a quadric is to use a stereographic projection of the quadric to establish a bi-rational mapping among points on a plane and points on the quadric. The properties of the generalized stereographic projection for a sphere are discussed. A rational quadratic surface whose algebraic degree is higher than two is called a “Steiner surface.” The chapter also describes the properties of quadrics concerning the applications in geometric modeling: fitting, blending, and offsetting. It reviews two algebraic methods developed for general quadrics: intersection and interference.

[1]  Barry Joe,et al.  Reparameterization of rational triangular Bézier surfaces , 1994, Comput. Aided Geom. Des..

[2]  Itzhak Wilf,et al.  Quadric-surface intersection curves: shape and structure , 1993, Comput. Aided Des..

[3]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[4]  Joshua Levin,et al.  A parametric algorithm for drawing pictures of solid objects composed of quadric surfaces , 1976, CACM.

[5]  W Lu RATIONALITY OF THE OFFSETS TO ALGEBRAIC CURVES AND SURFACES , 1994 .

[6]  W. Lü Offset-rational parametric plane curves , 1995 .

[7]  T. Uehara,et al.  Self-intersection of an offset surface , 1990, Comput. Aided Des..

[8]  John K. Johnstone,et al.  On the lower degree intersections of two natural quadrics , 1994, TOGS.

[9]  Wolfgang Dahmen,et al.  Smooth piecewise quadric surfaces , 1989 .

[10]  Ron Goldman,et al.  Rational Quadratic Parameterizations of Quadrics , 1997, Int. J. Comput. Geom. Appl..

[11]  Joe D. Warren,et al.  Bézier representation for quadric surface patches , 1990, Comput. Aided Des..

[12]  D. M. Y. Sommerville Analytical geometry of three dimensions , 1934 .

[13]  Yun-shi Zhou,et al.  On blending of several quadratic algebraic surfaces , 2000, Comput. Aided Geom. Des..

[14]  Ramon F. Sarraga,et al.  Algebraic methods for intersections of quadric surfaces in GMSOLID , 1983, Comput. Vis. Graph. Image Process..

[15]  Rida T. Farouki,et al.  Exact offset procedures for simple solids , 1985, Comput. Aided Geom. Des..

[16]  James R. Miller,et al.  Geometric approaches to nonplanar quadric surface intersection curves , 1987, TOGS.

[17]  Gudrun Albrecht Determination and classification of triangular quadric patches , 1998, Comput. Aided Geom. Des..

[18]  Ron Goldman,et al.  Geometric Algorithms for Detecting and Calculating All Conic Sections in the Intersection of Any 2 Natural Quadric Surfaces , 1995, CVGIP Graph. Model. Image Process..

[19]  Lu Wei,et al.  Rationality of the offsets to algebraic curves and surfaces , 1994 .

[20]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[21]  Aristides A. G. Requicha,et al.  Offsetting operations in solid modelling , 1986, Comput. Aided Geom. Des..

[22]  Uwe Langbecker,et al.  Finite quadric segments with four conic boundary curves , 1990, Comput. Aided Geom. Des..

[23]  Marco Paluszny,et al.  Weighted radial displacement: A geometric look at Bézier conics and quadrics , 2000, Comput. Aided Geom. Des..

[24]  Bert Jüttler,et al.  Rational patches on quadric surfaces , 1995, Comput. Aided Des..

[25]  Joshua Z. Levin Mathematical models for determining the intersections of quadric surfaces , 1979 .

[26]  J. Hopcroft,et al.  Quadratic blending surfaces , 1985 .

[27]  Joe D. Warren,et al.  Blending algebraic surfaces , 1989, TOGS.

[28]  Ron Goldman,et al.  Degree, multiplicity, and inversion formulas for rational surfaces using u-resultants , 1992, Comput. Aided Geom. Des..

[29]  Binh Pham,et al.  Offset curves and surfaces: a brief survey , 1992, Comput. Aided Des..

[30]  Helmut Pottmann,et al.  Rational Ruled Surfaces and Their Offsets , 1996, CVGIP Graph. Model. Image Process..

[31]  Ching-Kuang Shene Blending two cones with Dupin cyclides , 1998, Comput. Aided Geom. Des..

[32]  Falai Chen,et al.  Blending Quadric Surfaces with Piecewise Algebraic Surfaces , 2001, Graph. Model..

[33]  Ron Goldman,et al.  Computing quadric surface intersections based on an analysis of plane cubic curves , 2002 .

[34]  Rida T. Farouki,et al.  Automatic parsing of degenerate quadric-surface intersections , 1989, TOGS.

[35]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[36]  Wenping Wang,et al.  An algebraic condition for the separation of two ellipsoids , 2001, Comput. Aided Geom. Des..

[37]  J. Schwartz,et al.  Precise Implementation of Cad Primitives using Rational Parameterizations of Standard Surfaces , 1984 .

[38]  Johannes Wallner,et al.  Rational blending surfaces between quadrics , 1997, Comput. Aided Geom. Des..

[39]  L. Mirsky,et al.  Introduction to Linear Algebra , 1965, The Mathematical Gazette.

[40]  Thomas W. Sederberg,et al.  Steiner Surface Patches , 1985, IEEE Computer Graphics and Applications.