An exact solution for a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate

[1]  E. Pan,et al.  Analytical three-dimensional solutions of anisotropic multilayered composite plates with modified couple-stress effect , 2016 .

[2]  Ernian Pan,et al.  Size-dependent behavior of functionally graded anisotropic composite plates , 2016 .

[3]  E. Pan,et al.  Harmonic response of multilayered one-dimensional quasicrystal plates subjected to patch loading , 2016 .

[4]  Q. Qin,et al.  Plastic analysis of multilayer sandwich beams with metal foam cores , 2016 .

[5]  Hessameddin Yaghoobi,et al.  Dynamic behavior of piezoelectric composite beams under moving loads , 2016 .

[6]  E. Pan,et al.  An exact closed-form solution for a multilayered one-dimensional orthorhombic quasicrystal plate , 2015 .

[7]  Alberto Milazzo,et al.  Variable kinematics models and finite elements for nonlinear analysis of multilayered smart plates , 2015 .

[8]  J. Sládek,et al.  Bending analyses of 1D orthorhombic quasicrystal plates , 2013 .

[9]  J. Lefebvre,et al.  Wave propagation in multilayered piezoelectric spherical plates , 2013 .

[10]  Daokui Xu,et al.  Effects of icosahedral phase formation on the microstructure and mechanical improvement of Mg alloys: A review , 2012 .

[11]  H. Ding,et al.  Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads , 2010 .

[12]  Liying Jiang,et al.  Interaction of parallel dielectric cracks in functionally graded piezoelectric materials , 2010 .

[13]  Xian‐Fang Li,et al.  Thermoelastic analysis of functionally graded annulus with arbitrary gradient , 2009 .

[14]  W. Q. Chen,et al.  Semi‐analytical analysis for multi‐directional functionally graded plates: 3‐D elasticity solutions , 2009 .

[15]  Chen Hualing,et al.  FREE VIBRATION OF FUNCTIONALLY GRADED, MAGNETO-ELECTRO-ELASTIC, AND MULTILAYERED PLATES ⋆ , 2006 .

[16]  C. Lim,et al.  Analytical solutions for single- and multi-span functionally graded plates in cylindrical bending , 2005 .

[17]  E. Pan,et al.  Exact solution for functionally graded and layered magneto-electro-elastic plates , 2005 .

[18]  A. N. Khramov,et al.  Investigation of quaternary Al-based quasicrystal thin films for corrosion protection , 2004 .

[19]  S. Rokhlin,et al.  Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. , 2002, The Journal of the Acoustical Society of America.

[20]  E. Pan,et al.  Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates , 2001 .

[21]  Samuel M. Howard,et al.  Dynamic Response and Wave Propagation in Plane Trusses and Frames , 1999 .

[22]  E. Pan,et al.  A general Boundary Element Analysis of 2-D Linear Elastic Fracture Mechanics , 1997 .

[23]  E. Pan Static Green's functions in multilayered half spaces , 1997 .

[24]  Paul R. Heyliger,et al.  Exact Solutions for Simply Supported Laminated Piezoelectric Plates , 1997 .

[25]  Jong S. Lee,et al.  Exact electroelastic analysis of piezoelectric laminae via state space approach , 1996 .

[26]  Yang,et al.  Generalized elasticity theory of quasicrystals. , 1993, Physical review. B, Condensed matter.

[27]  Köster,et al.  Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. , 1993, Physical review letters.

[28]  I. Ovid’ko Plastic deformation and decay of dislocations in quasi-crystals , 1992 .

[29]  P. Steinhardt,et al.  Quasicrystals: a new class of ordered structures , 1984 .

[30]  John W. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[31]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .