튜닝 가능한 자원선택 방법론

Database administrators are demanded to acquire much knowledges and take great efforts for keeping consistent performance in system. Various principles, methods, and tools have been proposed in many studies and commercial products in order to alleviate such burdens on database administrators, and it has resulted to the automation of DBMS which reduces the intervention of database administrator. This paper suggests a resource selection method that estimates the status of the database system based on the workload characteristics and that recommends tuneable resources. Our method tries to simplify selection information on DBMS status using data-mining techniques, enhance the accuracy of the selection model, and recommend tuneable resource. For evaluating the performance of our method, instances are collected in TPC-C and TPC-W workloads, and accuracy are calculated using 10 cross validation method. comparisons are made between our scheme and the method which uses only the classification procedure without any simplification of informations. It is shown that our method has over 90% accuracy and can perform tuneable resource selection.