Small Sensitivity to Temperature Variations of Si-Photonic Mach–Zehnder Interferometer Using Si and SiN Waveguides

We demonstrated a small sensitivity to temperature variations of delay-line Mach-Zehnder interferometer (DL MZI) on a Si photonics platform. The key technique is to balance a thermo-optic effect in the two arms by using waveguide made of different materials. With silicon and silicon nitride waveguides, the fabricated DL MZI with a free-spectrum range of ~40 GHz showed a wavelength shift of -2.8 pm/K with temperature variations, which is 24 times smaller than that of the conventional Si-waveguide DL MZI. We also demonstrated the decoding of the 40-Gbit/s differential phase-shift keying signals to on-off keying signals with various temperatures. The tolerable temperature variation for the acceptable power penalty was significantly improved due to the small wavelength shifts.

[1]  T. Tsuchizawa,et al.  Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[3]  Koji Yamada,et al.  Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver. , 2012, Optics express.

[4]  T. Tsuchizawa,et al.  Silicon photonic circuit with polarization diversity. , 2008, Optics express.

[5]  Guo-Qiang Lo,et al.  CMOS compatible monolithic multi-layer Si₃N₄₋ on-SOI platform for low-loss high performance silicon photonics dense integration. , 2014, Optics express.

[6]  Po Dong,et al.  Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing , 2011 .

[7]  L. Ascari,et al.  All-Optical NRZ-DPSK to RZ-OOK Format Conversion Using Optical Delay Line Interferometer and Semiconductor Optical Amplifier , 2010 .

[8]  F. Xia,et al.  Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. , 2007, Optics express.

[9]  J. Leuthold,et al.  Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer , 2001, IEEE Photonics Technology Letters.

[10]  Tohru Mogami,et al.  High precision Si waveguide devices designed for 1.31μm and 1.55μm wavelengths on 300mm-SOI , 2014, 11th International Conference on Group IV Photonics (GFP).

[11]  Hiroshi Fukuda,et al.  Si-Ge-Silica Monolithic Integration Platform and Its Application to a 22-Gb/s $\times$ 16-ch WDM Receiver , 2013, IEEE Photonics Journal.

[12]  B. Jalali,et al.  Silicon photonics , 2006, IEEE Microwave Magazine.

[13]  A.H. Gnauck,et al.  Optical phase-shift-keyed transmission , 2005, Journal of Lightwave Technology.

[14]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[15]  M. Uenuma,et al.  Temperature-independent silicon waveguide optical filter. , 2009, Optics letters.

[16]  M. Lipson,et al.  Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers. , 2010, Optics express.

[17]  L. Vivien,et al.  Handbook of Silicon Photonics , 2013 .

[18]  T. Baba,et al.  Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides , 2004 .

[19]  Temperature compensated 50 Gb/s DPSK demodulator , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[20]  Peter J. Winzer,et al.  Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems , 2003 .