Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya

[1]  A. Beljaars,et al.  Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau , 2019, Climate Dynamics.

[2]  Deliang Chen,et al.  The Formation of a Dry‐Belt in the North Side of Central Himalaya Mountains , 2019, Geophysical Research Letters.

[3]  Jonathon S. Wright,et al.  Connections Between a Late Summer Snowstorm Over the Southwestern Tibetan Plateau and a Concurrent Indian Monsoon Low‐Pressure System , 2018, Journal of Geophysical Research: Atmospheres.

[4]  Myung‐Seo Koo,et al.  A Parameterization of Turbulent‐Scale and Mesoscale Orographic Drag in a Global Atmospheric Model , 2018, Journal of Geophysical Research: Atmospheres.

[5]  Daosheng Xu,et al.  Evaluating and Improving Wind Forecasts over South China: The Role of Orographic Parameterization in the GRAPES Model , 2018, Advances in Atmospheric Sciences.

[6]  Kun Yang,et al.  Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau , 2018, Climate Dynamics.

[7]  N. Guyennon,et al.  Impact of summer monsoon on the elevation‐dependence of meteorological variables in the south of central Himalaya , 2018 .

[8]  Kun Yang,et al.  Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models’ wet bias over the Tibetan Plateau , 2018, Climate Dynamics.

[9]  A. Sorteberg,et al.  Synoptic Conditions and Moisture Sources Actuating Extreme Precipitation in Nepal , 2017 .

[10]  Yang Wang,et al.  Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau , 2017 .

[11]  K. Dethloff,et al.  Uncertainties in coupled regional Arctic climate simulations associated with the used land surface model , 2017 .

[12]  Yan Wang,et al.  Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets against GPS Measurements on the Southern Tibetan Plateau , 2017 .

[13]  Hui Lu,et al.  Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high‐density rain gauge network , 2017 .

[14]  Wei Wang,et al.  Evaluation and comparison of newest GPM and TRMM products over Mekong River Basin at daily scale , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[15]  T. Shepherd,et al.  Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation , 2016, Journal of advances in modeling earth systems.

[16]  Song-You Hong,et al.  An updated subgrid orographic parameterization for global atmospheric forecast models , 2015 .

[17]  Y. Chen,et al.  Response of winter moisture circulation to the India-Burma Trough and its modulation by the South Asian waveguide. , 2015 .

[18]  Deliang Chen,et al.  Evaluation of WRF Mesoscale Climate Simulations over the Tibetan Plateau during 1979–2011 , 2015 .

[19]  K. Fan,et al.  Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4 , 2015, Advances in Atmospheric Sciences.

[20]  D. Scherer,et al.  Precipitation seasonality and variability over the Tibetan plateau as resolved by the High Asia reanalysis , 2014 .

[21]  S. Seneviratne,et al.  Systematic land climate and evapotranspiration biases in CMIP5 simulations , 2014, Geophysical research letters.

[22]  H. Jacobi,et al.  Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations , 2013 .

[23]  F. Su,et al.  Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau , 2013 .

[24]  D. Shrestha,et al.  Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar , 2012 .

[25]  T. Zhou,et al.  Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis , 2012 .

[26]  Xiangde Xu,et al.  A China-Japan Cooperative JICA Atmospheric Observing Network over the Tibetan Plateau (JICA/Tibet Project) : An Overviews (Special Issue on Japan-China Meteorological Disaster Reduction Corporation Research Center Project (JICA/Tibet Project)) , 2012 .

[27]  Xubin Zeng,et al.  Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau , 2012 .

[28]  J. Dudhia,et al.  Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model , 2012 .

[29]  R. Wu,et al.  Variations of the winter India‐Burma Trough and their links to climate anomalies over southern and eastern Asia , 2011 .

[30]  Dieter Scherer,et al.  WRF simulation of a precipitation event over the Tibetan Plateau, China - an assessment using remote sensing and ground observations , 2010 .

[31]  S. Sugimoto,et al.  Transportation of Water Vapor into the Tibetan Plateau in the Case of a Passing Synoptic-Scale Trough , 2008 .

[32]  G. Thompson,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization , 2008 .

[33]  Chungu Lu,et al.  World water tower: An atmospheric perspective , 2008 .

[34]  Robert A. Houze,et al.  Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar , 2007 .

[35]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[36]  Douglas W. Burbank,et al.  Topography, relief, and TRMM‐derived rainfall variations along the Himalaya , 2006 .

[37]  L. Rontu A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model , 2006 .

[38]  A. Beljaars,et al.  A new parametrization of turbulent orographic form drag , 2004 .

[39]  Tetsuzo Yasunari,et al.  The Seasonal and Intraseasonal Variability of Diurnal Cloud Activity over the Tibetan Plateau , 2001 .

[40]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[41]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[42]  J. Dudhia Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model , 1989 .

[43]  B. Farrell,et al.  Absolute barotropic instability and monsoon depressions , 1983 .

[44]  MA Jiehu Dynamic Downscaling of Summer Precipitation Prediction over China in 1998 Using WRF and CCSM4 , 2015 .

[45]  Deliang L. Chen,et al.  Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA3 , 2013 .

[46]  Shen Xue-shun,et al.  Parameterization of Turbulent Orographic Form Drag and Implementation in GRAPES , 2011 .

[47]  Guoxiong Wu,et al.  Effects of the Tibetan Plateau , 2006 .

[48]  L. Rontu A study on parametrization of orography‐related momentum fluxes in a synoptic‐scale NWP model , 2006 .

[49]  T. Yasunari,et al.  Characteristics of Diurnal Variations in Convection and Precipitation over the Southern Tibetan Plateau during Summer , 2005 .