2D Sandwich‐like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors

2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors are prepared from the direct growth of FeOOH nanorods on the surface of graphene and the subsequent electrochemical transformation of FeOOH to Fe(3)O(4). The Fe(3)O(4) @RGO nanocomposites exhibit superior capacitance (326 F g(-1)), high energy density (85 Wh kg(-1)), large power, and good cycling performance in 1 mol L(-1) LiOH solution.

[1]  D. He,et al.  Hydrothermal synthesis of Fe3O4 nanoparticles and its application in lithium ion battery , 2009 .

[2]  Fei Wei,et al.  Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage , 2009 .

[3]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[4]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[5]  Mao-Sung Wu,et al.  Nanostructured Iron Oxide Films Prepared by Electrochemical Method for Electrochemical Capacitors , 2009 .

[6]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[7]  Xin Wang,et al.  From graphene to metal oxide nanolamellas: a phenomenon of morphology transmission. , 2010, ACS nano.

[8]  Jingjing Xu,et al.  Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. , 2010, ACS nano.

[9]  K. Müllen,et al.  Sandwich‐Like, Graphene‐Based Titania Nanosheets with High Surface Area for Fast Lithium Storage , 2011, Advanced materials.

[10]  Yu‐Guo Guo,et al.  Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity , 2006, Nature materials.

[11]  S. Ramaprabhu,et al.  Magnetite Decorated Multiwalled Carbon Nanotube Based Supercapacitor for Arsenic Removal and Desalination of Seawater , 2010 .

[12]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[13]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[14]  Mao-Sung Wu,et al.  Electrochemical Growth of Iron Oxide Thin Films with Nanorods and Nanosheets for Capacitors , 2009 .

[15]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[16]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[17]  R. Young,et al.  The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. , 2011, Angewandte Chemie.

[18]  Qiang Zhang,et al.  A Three‐Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors , 2010, Advanced materials.

[19]  U. Kolb,et al.  Direct access to metal or metal oxide nanocrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage. , 2010, Journal of the American Chemical Society.

[20]  Yexiang Tong,et al.  ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[21]  Juan Li,et al.  Preparation and properties of Co3O4 nanorods as supercapacitor material , 2009 .

[22]  X. Bao,et al.  Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. , 2010, Chemical communications.

[23]  Jeng‐Kuei Chang,et al.  Annealed Mn–Fe binary oxides for supercapacitor applications , 2008 .

[24]  Xin Zhao,et al.  Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors , 2010 .

[25]  Pooi See Lee,et al.  Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. , 2010, ACS nano.

[26]  D. Wexler,et al.  Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. , 2011, Chemistry.

[27]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[28]  Ping Liu,et al.  Two-dimensional nanocomposites based on chemically modified graphene. , 2011, Chemistry.

[29]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[30]  Xin Wang,et al.  A nanostructured graphene/polyaniline hybrid material for supercapacitors. , 2010, Nanoscale.

[31]  Songhun Yoon,et al.  Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. , 2011, Chemical communications.

[32]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[33]  T. Brousse,et al.  Nanosized α-LiFeO2 as electrochemical supercapacitor electrode in neutral sulfate electrolytes , 2010 .

[34]  Huakun Liu,et al.  Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies , 2011 .

[35]  H. Dai,et al.  Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. , 2010, Journal of the American Chemical Society.

[36]  Weiguo Song,et al.  Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes , 2011 .

[37]  Yang Tian,et al.  Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents , 2011 .

[38]  Y. Tong,et al.  Synthesis of hierarchical rippled Bi(2)O(3) nanobelts for supercapacitor applications. , 2010, Chemical communications.

[39]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[40]  S. Mhaisalkar,et al.  Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes , 2010 .

[41]  Soojin Park,et al.  Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes , 2011 .

[42]  Hao Jiang,et al.  Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors , 2011 .

[43]  A. Mansour,et al.  Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. , 2010, ACS nano.

[44]  M. Zheng,et al.  The Nickel Oxide/CNT Composites with High Capacitance for Supercapacitor , 2010 .

[45]  K. Ho,et al.  Investigation on Capacitance Mechanisms of Fe3O4 Electrochemical Capacitors , 2006 .

[46]  Jinqing Wang,et al.  Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors , 2011 .

[47]  Junwu Zhu,et al.  Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High‐Performance Supercapacitors , 2011, Advanced materials.

[48]  K. Müllen,et al.  Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. , 2010, Angewandte Chemie.

[49]  Tae Hee Han,et al.  Peptide/Graphene Hybrid Assembly into Core/Shell Nanowires , 2010, Advanced materials.

[50]  Lijie Dong,et al.  Fluxible monodisperse quantum dots with efficient luminescence. , 2010, Angewandte Chemie.

[51]  Guoliang Zhang,et al.  Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation , 2008 .

[52]  W. Zhuang,et al.  Carbon titania mesoporous composite whisker as stable supercapacitor electrode material , 2010 .

[53]  Hailiang Wang,et al.  Nanocrystal growth on graphene with various degrees of oxidation. , 2010, Journal of the American Chemical Society.

[54]  Jeng‐Kuei Chang,et al.  Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications , 2010 .

[55]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[56]  Yinjuan Xie,et al.  Well-aligned molybdenum oxide nanorods on metal substrates: solution-based synthesis and their electrochemical capacitor application , 2010 .

[57]  Ke‐long Huang,et al.  Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor , 2009 .

[58]  W. Sugimoto,et al.  Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. , 2003, Angewandte Chemie.

[59]  Nae-Lih Wu,et al.  Electrochemical capacitor of magnetite in aqueous electrolytes , 2003 .

[60]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.

[61]  Klaus Müllen,et al.  Graphene-based nanosheets with a sandwich structure. , 2010, Angewandte Chemie.

[62]  Martin Pumera,et al.  Graphene-based nanomaterials for energy storage , 2011 .

[63]  Dingshan Yu,et al.  Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors , 2010 .

[64]  F. Beck,et al.  Rechargeable batteries with aqueous electrolytes , 2000 .

[65]  R. Holze,et al.  V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution , 2009 .

[66]  F. Wei,et al.  Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes , 2010 .

[67]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .