Using a graph grammar system in the finite element method

Abstract The paper presents a system of Composite Graph Grammars (CGGs)modelling adaptive two dimensional hp Finite Element Method (hp-FEM) algorithms with rectangular finite elements. A computational mesh is represented by a composite graph. The operations performed over the mesh are defined by the graph grammar rules. The CGG system contains different graph grammars defining different kinds of rules of mesh transformations. These grammars allow one to generate the initial mesh, assign values to element nodes and perform h- and p-adaptations. The CGG system is illustrated with an example from the domain of geophysics.

[1]  Tsili Wang,et al.  3‐D electromagnetic anisotropy modeling using finite differences , 2001 .

[2]  Victor Mitrana,et al.  Cooperation in Contextual Grammars , 1998, MFCS Workshop on Grammar Systems.

[3]  Jie Zhang,et al.  3-D resistivity forward modeling and inversion using conjugate gradients , 1995 .

[4]  Gheorghe Paun,et al.  Grammar Systems: A Grammatical Approach to Distribution and Cooperation , 1995, ICALP.

[5]  Gregory A. Newman,et al.  Three-dimensional induction logging problems, Part 2: A finite-difference solution , 2002 .

[6]  Jozef Kelemen,et al.  Syntactical models of distributed cooperative systems , 1991, J. Exp. Theor. Artif. Intell..

[7]  Erzsébet Csuhaj-Varjú,et al.  Dynamically controlled cooperating/distributed grammar systems , 1993, Inf. Sci..

[8]  Ewa Grabska,et al.  A Graph Grammar Model of the hp Adaptive Three Dimensional Finite Element Method. Part I , 2012, Fundam. Informaticae.

[9]  Gheorghe Paun,et al.  Grammar Systems , 1997, Handbook of Formal Languages.

[10]  Victor M. Calo,et al.  A direct solver with reutilization of LU factorizations for hh-adaptive finite element grids with point singularities , 2013, Comput. Math. Appl..

[11]  Ewa Grabska,et al.  A Graph Grammar Model of the hp Adaptive Three Dimensional Finite Element Method. Part II , 2012, Fundam. Informaticae.

[12]  Vladimir Druskin,et al.  New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry , 1999 .

[13]  Mikaël Barboteu,et al.  An analytical and numerical approach to a bilateral contact problem with nonmonotone friction , 2013, Int. J. Appl. Math. Comput. Sci..

[14]  David Pardo,et al.  Out-of-core multi-frontal solver for multi-physics hp adaptive problems , 2011, ICCS.

[15]  Barbara Strug,et al.  Applying Cooperating Distributed Graph Grammars in Computer Aided Design , 2005, PPAM.

[16]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[17]  Otto von Estorff,et al.  BEM and FEM results of displacements in a poroelastic column , 2012, Int. J. Appl. Math. Comput. Sci..

[18]  Patrick Hild,et al.  A sign preserving mixed finite element approximation for contact problems , 2011, Int. J. Appl. Math. Comput. Sci..

[19]  Lawrence B. Holder,et al.  Inferring Graph Grammars by Detecting Overlap in Frequent Subgraphs , 2008, Int. J. Appl. Math. Comput. Sci..

[20]  Maciej Paszynski On the Parallelization of Self-Adaptive hp-Finite Element Methods Part I. Composite Programmable Graph GrammarModel , 2009, Fundam. Informaticae.

[21]  Jean-Louis Giavitto,et al.  Declarative Mesh Subdivision Using Topological Rewriting in MGS , 2010, ICGT.

[22]  Robert Schaefer,et al.  Graph grammar‐driven parallel partial differential equation solver , 2010, Concurr. Comput. Pract. Exp..

[23]  David Pardo,et al.  Anisotropic 2D mesh adaptation in hp-adaptive FEM , 2011, ICCS.

[24]  Maciej Paszynski On the Parallelization of Self-Adaptive hp-Finite Element Methods Part II. Partitioning Communication Agglomeration Mapping (PCAM) Analysis , 2009, Fundam. Informaticae.

[25]  Ewa Grabska,et al.  Graph Transformations for Modeling hp-Adaptive Finite Element Method with Triangular Elements , 2008, ICCS.

[26]  David Pardo,et al.  A self-adaptive goal-oriented hp-finite element method with electromagnetic applications. Part II: Electrodynamics , 2007 .

[27]  Ewa Grabska,et al.  Graph Transformations for Modeling hp-Adaptive Finite Element Method with Mixed Triangular and Rectangular Elements , 2009, ICCS.

[28]  Carlos Torres-Verdín,et al.  Two-Dimensional High-Accuracy Simulation of Resistivity Logging-While-Drilling (LWD) Measurements Using a Self-Adaptive Goal-Oriented hp Finite Element Method , 2006, SIAM J. Appl. Math..

[29]  D. Pardo,et al.  Simulations of 3D DC borehole resistivity measurements with a goal-oriented hp finite-element method. Part II: through-casing resistivity instruments , 2008 .