Using a graph grammar system in the finite element method
暂无分享,去创建一个
Barbara Strug | Ewa Grabska | Anna Paszynska | Maciej Paszynski | B. Strug | E. Grabska | M. Paszyński | A. Paszyńska
[1] Tsili Wang,et al. 3‐D electromagnetic anisotropy modeling using finite differences , 2001 .
[2] Victor Mitrana,et al. Cooperation in Contextual Grammars , 1998, MFCS Workshop on Grammar Systems.
[3] Jie Zhang,et al. 3-D resistivity forward modeling and inversion using conjugate gradients , 1995 .
[4] Gheorghe Paun,et al. Grammar Systems: A Grammatical Approach to Distribution and Cooperation , 1995, ICALP.
[5] Gregory A. Newman,et al. Three-dimensional induction logging problems, Part 2: A finite-difference solution , 2002 .
[6] Jozef Kelemen,et al. Syntactical models of distributed cooperative systems , 1991, J. Exp. Theor. Artif. Intell..
[7] Erzsébet Csuhaj-Varjú,et al. Dynamically controlled cooperating/distributed grammar systems , 1993, Inf. Sci..
[8] Ewa Grabska,et al. A Graph Grammar Model of the hp Adaptive Three Dimensional Finite Element Method. Part I , 2012, Fundam. Informaticae.
[9] Gheorghe Paun,et al. Grammar Systems , 1997, Handbook of Formal Languages.
[10] Victor M. Calo,et al. A direct solver with reutilization of LU factorizations for hh-adaptive finite element grids with point singularities , 2013, Comput. Math. Appl..
[11] Ewa Grabska,et al. A Graph Grammar Model of the hp Adaptive Three Dimensional Finite Element Method. Part II , 2012, Fundam. Informaticae.
[12] Vladimir Druskin,et al. New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry , 1999 .
[13] Mikaël Barboteu,et al. An analytical and numerical approach to a bilateral contact problem with nonmonotone friction , 2013, Int. J. Appl. Math. Comput. Sci..
[14] David Pardo,et al. Out-of-core multi-frontal solver for multi-physics hp adaptive problems , 2011, ICCS.
[15] Barbara Strug,et al. Applying Cooperating Distributed Graph Grammars in Computer Aided Design , 2005, PPAM.
[16] L. Demkowicz. One and two dimensional elliptic and Maxwell problems , 2006 .
[17] Otto von Estorff,et al. BEM and FEM results of displacements in a poroelastic column , 2012, Int. J. Appl. Math. Comput. Sci..
[18] Patrick Hild,et al. A sign preserving mixed finite element approximation for contact problems , 2011, Int. J. Appl. Math. Comput. Sci..
[19] Lawrence B. Holder,et al. Inferring Graph Grammars by Detecting Overlap in Frequent Subgraphs , 2008, Int. J. Appl. Math. Comput. Sci..
[20] Maciej Paszynski. On the Parallelization of Self-Adaptive hp-Finite Element Methods Part I. Composite Programmable Graph GrammarModel , 2009, Fundam. Informaticae.
[21] Jean-Louis Giavitto,et al. Declarative Mesh Subdivision Using Topological Rewriting in MGS , 2010, ICGT.
[22] Robert Schaefer,et al. Graph grammar‐driven parallel partial differential equation solver , 2010, Concurr. Comput. Pract. Exp..
[23] David Pardo,et al. Anisotropic 2D mesh adaptation in hp-adaptive FEM , 2011, ICCS.
[24] Maciej Paszynski. On the Parallelization of Self-Adaptive hp-Finite Element Methods Part II. Partitioning Communication Agglomeration Mapping (PCAM) Analysis , 2009, Fundam. Informaticae.
[25] Ewa Grabska,et al. Graph Transformations for Modeling hp-Adaptive Finite Element Method with Triangular Elements , 2008, ICCS.
[26] David Pardo,et al. A self-adaptive goal-oriented hp-finite element method with electromagnetic applications. Part II: Electrodynamics , 2007 .
[27] Ewa Grabska,et al. Graph Transformations for Modeling hp-Adaptive Finite Element Method with Mixed Triangular and Rectangular Elements , 2009, ICCS.
[28] Carlos Torres-Verdín,et al. Two-Dimensional High-Accuracy Simulation of Resistivity Logging-While-Drilling (LWD) Measurements Using a Self-Adaptive Goal-Oriented hp Finite Element Method , 2006, SIAM J. Appl. Math..
[29] D. Pardo,et al. Simulations of 3D DC borehole resistivity measurements with a goal-oriented hp finite-element method. Part II: through-casing resistivity instruments , 2008 .