Efficient Computation of Safe, Fast Charging Protocols for Multiphase Lithium-Ion Batteries: A Lithium Iron Phosphate Case Study

[1]  R. Gopal,et al.  Operando Microscopy Diagnosis of the Onset of Lithium Plating in Transparent Lithium-Ion Full Cells. , 2022, ACS applied materials & interfaces.

[2]  Daniel A. Cogswell,et al.  Novel Operating Modes for the Charging of Lithium-Ion Batteries , 2022, Journal of The Electrochemical Society.

[3]  P. Notten,et al.  Porous Electrode Modeling and its Applications to Li‐Ion Batteries , 2022, Advanced Energy Materials.

[4]  Daniel A. Cogswell,et al.  Fast Charging of Lithium-ion Batteries by Mathematical Reformulation as Mixed Continuous-Discrete Simulation , 2022, 2022 American Control Conference (ACC).

[5]  R. Braatz,et al.  Fast charging design for Lithium-ion batteries via Bayesian optimization , 2022, Applied Energy.

[6]  Daniel A. Cogswell,et al.  Methods—PETLION: Open-Source Software for Millisecond-Scale Porous Electrode Theory-Based Lithium-Ion Battery Simulations , 2021 .

[7]  Pankaj Saha,et al.  Real-time optimal fast charging of Li-ion batteries with varying temperature and charging behaviour constraints , 2021 .

[8]  Anna G. Stefanopoulou,et al.  An Algorithmic Safety VEST For Li-ion Batteries During Fast Charging , 2021, IFAC-PapersOnLine.

[9]  Xia Wang,et al.  Comparison of the effect of linear and two-step fast charging protocols on degradation of lithium ion batteries , 2021, Energy.

[10]  T. Gao,et al.  Interplay of Lithium Intercalation and Plating on a Single Graphite Particle , 2021, Joule.

[11]  P. Gyan,et al.  Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures , 2021 .

[12]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[13]  Daniel A. Cogswell,et al.  Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes , 2020, Energy & Environmental Science.

[14]  W. Chueh,et al.  Theory of coupled ion-electron transfer kinetics , 2020, 2007.12980.

[15]  T. Gao,et al.  A scaling law to determine phase morphologies during ion intercalation , 2020, Energy & Environmental Science.

[16]  Marcello Torchio,et al.  Optimal charging of an electric vehicle battery pack: A real-time sensitivity-based model predictive control approach , 2020, Journal of Power Sources.

[17]  M. Verbrugge,et al.  Modeling Overcharge at Lithiated-Graphite Porous Electrodes: Plating and Dissolution of Lithium , 2020, Journal of The Electrochemical Society.

[18]  Andrew M. Colclasure,et al.  Model-Instructed Design of Novel Charging Protocols for the Extreme Fast Charging of Lithium-Ion Batteries Without Lithium Plating , 2020 .

[19]  Richard D. Braatz,et al.  Real-time Nonlinear Model Predictive Control (NMPC) Strategies using Physics-Based Models for Advanced Lithium-ion Battery Management System (BMS) , 2020 .

[20]  Stefano Ermon,et al.  Closed-loop optimization of fast-charging protocols for batteries with machine learning , 2020, Nature.

[21]  Peng Zhao,et al.  Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model , 2019, Journal of Power Sources.

[22]  Xuning Feng,et al.  Lithium-ion battery fast charging: A review , 2019, eTransportation.

[23]  Kristen A. Severson,et al.  Data-driven prediction of battery cycle life before capacity degradation , 2019, Nature Energy.

[24]  Xia Wang,et al.  Modeling the effect of two-stage fast charging protocol on thermal behavior and charging energy efficiency of lithium-ion batteries , 2018, Journal of Energy Storage.

[25]  Richard D. Braatz,et al.  Review—Dynamic Models of Li-Ion Batteries for Diagnosis and Operation: A Review and Perspective , 2018 .

[26]  Daniel A. Cogswell,et al.  Size-dependent phase morphologies in LiFePO4 battery particles , 2018, Electrochemistry Communications.

[27]  Moritz Diehl,et al.  CasADi: a software framework for nonlinear optimization and optimal control , 2018, Mathematical Programming Computation.

[28]  Mahesh Krishnamurthy,et al.  Challenges and Advancements in Fast Charging Solutions for EVs: A Technological Review , 2018, 2018 IEEE Transportation Electrification Conference and Expo (ITEC).

[29]  D. Nešić,et al.  Model Predictive Control for Lithium-Ion Battery Optimal Charging , 2018, IEEE/ASME Transactions on Mechatronics.

[30]  Richard Barney Carlson,et al.  Enabling fast charging – A battery technology gap assessment , 2017 .

[31]  Xiaosong Hu,et al.  Optimal Charging of Li-Ion Batteries via a Single Particle Model with Electrolyte and Thermal Dynamics , 2017 .

[32]  M. Bazant,et al.  Multiphase Porous Electrode Theory , 2017, 1702.08432.

[33]  Guangyuan Zheng,et al.  Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. , 2017, Nano letters.

[34]  M. Dubarry,et al.  Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging , 2016 .

[35]  M. Bazant,et al.  Li Intercalation into Graphite: Direct Optical Imaging and Cahn-Hilliard Reaction Dynamics. , 2016, The journal of physical chemistry letters.

[36]  Dragan D. Nikolic DAE Tools: equation-based object-oriented modelling, simulation and optimisation software , 2016, PeerJ Comput. Sci..

[37]  Sang-Hoon Cha,et al.  Capacity fade modeling of a Lithium-ion battery for electric vehicles , 2015 .

[38]  Richard D. Braatz,et al.  Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models , 2014 .

[39]  Yiyang Li,et al.  Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. , 2014, Nature materials.

[40]  Martin Z. Bazant,et al.  Phase Transformation Dynamics in Porous Battery Electrodes , 2014, 1401.7072.

[41]  David Anseán,et al.  Fast charging technique for high power lithium iron phosphate batteries: A cycle life analysis , 2013 .

[42]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[43]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[44]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[45]  Xiaosong Hu,et al.  A comparative study of equivalent circuit models for Li-ion batteries , 2012 .

[46]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[47]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[48]  Ralph E. White,et al.  Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) , 2011 .

[49]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[50]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[51]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive control vector parameterization , 2005, Comput. Chem. Eng..

[52]  J.H.G. Op het Veld,et al.  Boostcharging Li-ion batteries: A challenging new charging concept , 2005 .

[53]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[54]  Ralph E. White,et al.  Mathematical modeling of the capacity fade of Li-ion cells , 2003 .

[55]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty , 2003, Comput. Chem. Eng..

[56]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[57]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[58]  C. Chidsey,et al.  Free Energy and Temperature Dependence of Electron Transfer at the Metal-Electrolyte Interface , 1991, Science.

[59]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[60]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[61]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[62]  Daniel A. Cogswell,et al.  A Mixed Continuous-Discrete Approach to Fast Charging of Li-ion Batteries While Maximizing Lifetime , 2022, IFAC-PapersOnLine.

[63]  Karen E. Thomas-alyea,et al.  In Situ Observation and Mathematical Modeling of Lithium Distribution within Graphite , 2017 .

[64]  R. B. Gopaluni,et al.  LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control , 2016 .

[65]  Chris Manzie,et al.  Control-Oriented Modeling of A Lithium-Ion Battery for Fast Charging , 2014 .

[66]  Dawn Bernardi,et al.  Analysis of pulse and relaxation behavior in lithium-ion batteries , 2011 .

[67]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: I. Characterization of the nominal solution , 2003, Comput. Chem. Eng..

[68]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .