RELAXATION OF SOME TRANSVERSALLY ISOTROPIC ENERGIES AND APPLICATIONS TO SMECTIC A ELASTOMERS

We determine the relaxation of some transversally-isotropic energy densities, i.e. functions W : ℝ3×3 → [0,∞] with the property W(QFR) = W(F) for all Q ∈ SO(3) and all R ∈ SO(3) such that Rn0 = n0, where n0 is a fixed unit vector. One physically relevant example is a model for smectic A elastomers. We discuss the implications of our result for the computation of macroscopic stress–strain curves for this material and compare with experiment.

[1]  B. Kirchheim Deformations with finitely many gradients and stability of quasiconvex hulls , 2001 .

[2]  H. Finkelmann,et al.  Smectic A liquid single crystal elastomers showing macroscopic in-plane fluidity , 1997 .

[3]  S. Contia,et al.  Soft elastic response of stretched sheets of nematic elastomers : a numerical study , 2001 .

[4]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[5]  A. DeSimone,et al.  Soft elasticity and microstructure in smectic C elastomers , 2006 .

[6]  Anneliese Defranceschi,et al.  Homogenization of Multiple Integrals , 1999 .

[7]  Ian Charles Sage,et al.  Liquid Crystal Elastomers , 2003 .

[8]  M. Warner,et al.  Elasticity of smectic-A elastomers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Georg Dolzmann,et al.  Variational Methods for Crystalline Microstructure - Analysis and Computation , 2003 .

[10]  A. DeSimone,et al.  Material instabilities in nematic elastomers , 2000 .

[11]  A. DeSimone,et al.  Soft elastic response of stretched sheets of nematic elastomers: a numerical study , 2002 .

[12]  Antonio DeSimone,et al.  Macroscopic Response of¶Nematic Elastomers via Relaxation of¶a Class of SO(3)-Invariant Energies , 2002 .

[13]  B. Dacorogna,et al.  Implicit partial differential equations , 1999 .

[14]  J. Ball,et al.  W1,p-quasiconvexity and variational problems for multiple integrals , 1984 .

[15]  S. Müller Variational models for microstructure and phase transitions , 1999 .

[16]  Rolf Rannacher,et al.  Trends in Nonlinear Analysis , 2002 .

[17]  M. Lösche,et al.  Structure and elastic properties of smectic liquid crystalline elastomer films. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[19]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[20]  G. Milton The Theory of Composites , 2002 .

[21]  Sergio Conti,et al.  Quasiconvex functions incorporating volumetric constraints are rank-one convex , 2008 .

[22]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[23]  A necessary and sufficient condition for lower semicontinuity , 1974 .

[24]  A. DeSimone,et al.  Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[26]  Stefan Müller,et al.  Multiscale Modeling of Materials — the Role of Analysis , 2003 .

[27]  E. M. Terentjev,et al.  Liquid Crystal Elastomers , 2003 .

[28]  David Kinderlehrer,et al.  Equilibrium configurations of crystals , 1988 .

[29]  A. DeSimone Energetics of fine domain structures , 1999 .

[30]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[31]  Robert V. Kohn,et al.  The relaxation of a double-well energy , 1991 .

[32]  T. Lubensky,et al.  Unconventional elasticity in smectic-A elastomers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  B. Kirchheim,et al.  Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions , 2007 .

[34]  P. Neff,et al.  Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions , 2003 .

[35]  Vladimir Sverak,et al.  Convex integration with constraints and applications to phase transitions and partial differential equations , 1999 .

[36]  H. Finkelmann,et al.  Smectic‐A liquid single crystal elastomers – strain induced break‐down of smectic layers , 1999 .