Bayesian Phylogenetic Analysis Supports Monophyly of Ambulacraria and of Cyclostomes

Abstract Vertebrates are part of the phylum Chordata, itself part of a three-phylum group known as the deuterostomes. Despite extensive phylogenetic analysis of the deuterostome animals, several unresolved relationships remain. These include the relationship between the three deuterostome phyla (chordates, echinoderms and hemichordates), and the monophyletic or paraphyletic origin of the cyclostomes (hagfish and lampreys). Using robust Bayesian statistical analysis of 18S ribosomal DNA, mitochondrial genes and nuclear protein-coding DNA, we find strong support for a hemichordate-echinoderm clade, and for monophyly of the cyclostomes.

[1]  Mark Pagel,et al.  Major fungal lineages are derived from lichen symbiotic ancestors , 2022 .

[2]  John P. Huelsenbeck,et al.  Phylogeny, Genome Evolution, and Host Specificity of Single-Stranded RNA Bacteriophage (Family Leviviridae) , 2001, Journal of Molecular Evolution.

[3]  L. Nezlin Tornaria of hemichordates and other dipleurula‐type larvae: a comparison* , 2000 .

[4]  B. Swalla,et al.  Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Janvier,et al.  The complete nucleotide sequence of the mitochondrial DNA of the agnathan Lampetra fluviatilis: bearings on the phylogeny of cyclostomes. , 2000, Molecular biology and evolution.

[6]  K. Katoh,et al.  Monophyly of Lampreys and Hagfishes Supported by Nuclear DNA–Coded Genes , 1999, Journal of Molecular Evolution.

[7]  B. Degnan,et al.  Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade , 1999, Evolution & development.

[8]  B. Weir,et al.  Bayesian statistics in genetics: a guide for the uninitiated. , 1999, Trends in genetics : TIG.

[9]  N. Satoh,et al.  Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. , 1999, Development.

[10]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[11]  E. Davidson,et al.  A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. , 1999, Development.

[12]  J. Sullivan,et al.  28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. , 1998, Molecular biology and evolution.

[13]  S. Pääbo,et al.  The mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. , 1998, Genetics.

[14]  D. Penny,et al.  Testing the Cambrian explosion hypothesis by using a molecular dating technique. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  C. Nielsen Origin and evolution of animal life cycles , 1998 .

[16]  S. Pääbo,et al.  Codon reassignment and amino acid composition in hemichordate mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Jacobson,et al.  An episode in the ancestry of vertebrates: From mitrate to crown‐group craniate , 1998 .

[18]  K. Strimmer,et al.  Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies , 1996 .

[19]  N. Brown,et al.  The Early Phylogeny of Chordates and Echinoderms and the Origin of Chordate Left–Right Asymmetry and Bilateral Symmetry , 1996 .

[20]  R. Raff,et al.  Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. , 1994, Molecular biology and evolution.

[21]  H. Wada,et al.  Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M J Telford,et al.  The phylogenetic affinities of the chaetognaths: a molecular analysis. , 1993, Molecular biology and evolution.

[23]  P. Forey,et al.  Agnathans and the origin of jawed vertebrates , 1993, Nature.

[24]  G. S. Whitt,et al.  Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. , 1992, Science.

[25]  R. Raff,et al.  Molecular phylogeny of the animal kingdom. , 1988, Science.

[26]  Q. Bone,et al.  The ancestry of the vertebrates , 1987 .

[27]  J. Maisey HEADS AND TAILS: A CHORDATE PHYLOGENY , 1986, Cladistics : the international journal of the Willi Hennig Society.

[28]  P. Forey YET MORE REFLECTIONS ON AGNATHAN-GNATHOSTOME RELATIONSHIPS , 1984 .

[29]  E. Williams,et al.  The Phylogeny of Vertebrate , 1978 .

[30]  G. Ubaghs Early Paleozoic Echinoderms , 1975 .

[31]  Bertil Hanström über DEN FEINEREN BAU DES NERVENSYSTEMS DER TRICLADEN TURBELLARIEN AUF GRUND VON UNTERSUCHUNGEN AN BDELLOURA CANDIDA , 1926 .

[32]  W. Bateson II. Note on the later stages in the development of Balanoglossus Kowalevskii (Agassiz), and on the affinities of the enteropneusta , 1885, Proceedings of the Royal Society of London.

[33]  C. Duméril,et al.  Zoologie analytique, ou méthode naturelle de classification des animaux, rendue plus facile a l'aide de tableaux synoptiques , 1803 .