Applications of the fusion tree method to computational geometry and searching

a related loglogN improvement of Chazelle’s O(N logd-lN / log log N) space data structure [C86a], that performs the reporting version of d-dimensional orthogonal range query in time O(logd-lN / loglogN + K), where K is the number of elements outputted. a data structure for performing the aggregation version of orthogonal range query with a time-space complexity precisely matching the lower bound prediction that Yao [Y82] derived for the dimension d = 2 and Chazelle

[1]  Michael L. Fredman,et al.  Trans-dichotomous algorithms for minimum spanning trees and shortest paths , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[2]  Prof. Dr. Kurt Mehlhorn,et al.  Data Structures and Algorithms 1 , 1984, EATCS.

[3]  Friedhelm Meyer auf der Heide,et al.  Dynamic perfect hashing: upper and lower bounds , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[4]  George S. Lueker,et al.  Adding range restriction capability to dynamic data structures , 1985, JACM.

[5]  Dan E. Willard Reduced Memory Space for Multi-Dimensional Search Trees (Extended Abstract) , 1985, STACS.

[6]  Michael L. Fredman,et al.  BLASTING through the information theoretic barrier with FUSION TREES , 1990, STOC '90.

[7]  Bernard Chazelle,et al.  Lower bounds for orthogonal range searching: part II. The arithmetic model , 1990, JACM.

[8]  Peter van Emde Boas,et al.  Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space , 1977, Inf. Process. Lett..

[9]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[10]  Dan E. Willard Log-Logarithmic Worst-Case Range Queries are Possible in Space Theta(N) , 1983, Inf. Process. Lett..

[11]  Michael Ian Shamos,et al.  A Problem in Multivariate Statistics: Algorithm, Data Structure and Applications. , 1978 .

[12]  Paul F. Dietz Optimal Algorithms for List Indexing and Subset Rank , 1989, WADS.

[13]  Dan E. Willard,et al.  Log-logarithmic worst-case range queries are possible in space ⊕(N) , 1983 .

[14]  L. Shaw,et al.  System Theory. , 1965, Science.

[15]  Friedhelm Meyer auf der Heide,et al.  A New Universal Class of Hash Functions and Dynamic Hashing in Real Time , 1990, ICALP.

[16]  Hermann A. Maurer,et al.  Efficient worst-case data structures for range searching , 1978, Acta Informatica.

[17]  Gaston H. Gonnet,et al.  Handbook Of Algorithms And Data Structures , 1984 .

[18]  Andrew Chi-Chih Yao On the Complexity of Maintaining Partial Sums , 1985, SIAM J. Comput..

[19]  Edward M. McCreight,et al.  Priority Search Trees , 1985, SIAM J. Comput..