Positive definite estimators of large covariance matrices

Using convex optimization, we construct a sparse estimator of the covariance matrix that is positive definite and performs well in high-dimensional settings. A lasso-type penalty is used to encourage sparsity and a logarithmic barrier function is used to enforce positive definiteness. Consistency and convergence rate bounds are established as both the number of variables and sample size diverge. An efficient computational algorithm is developed and the merits of the approach are illustrated with simulations and a speech signal classification example. Copyright 2012, Oxford University Press.

[1]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[2]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[3]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[4]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[5]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Maximum Likelihood Estimation , 2007, ArXiv.

[6]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[7]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[8]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[9]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[10]  Bin Yu,et al.  High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.

[11]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[12]  Max A. Little,et al.  Suitability of Dysphonia Measurements for Telemonitoring of Parkinson's Disease , 2008, IEEE Transactions on Biomedical Engineering.

[13]  R. Tibshirani,et al.  Covariance‐regularized regression and classification for high dimensional problems , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[14]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[15]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[16]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[17]  Weidong Liu,et al.  Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.

[18]  M. Pourahmadi Covariance Estimation: The GLM and Regularization Perspectives , 2011, 1202.1661.

[19]  R. Tibshirani,et al.  Sparse estimation of a covariance matrix. , 2011, Biometrika.