R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization

This paper proposes and evaluates an evolutionary multiobjective optimization algorithm (EMOA) that eliminates dominance ranking in selection and performs indicator-based selection with the R2 indicator. Although it is known that the R2 indicator possesses desirable properties to quantify the goodness of a solution or a solution set, few attempts have been made until recently to investigate indicator-based EMOAs with the R2 indicator. The proposed EMOA, called R2-IBEA, is designed to obtain a diverse set of Pareto-approximated solutions by correcting an inherent bias in the R2 indicator. (The R2 indicator has a stronger bias to the center of the Pareto front than to its edges.) Experimental results demonstrate that R2IBEA outperforms existing indicator-based, decomposition-based and dominance ranking based EMOAs in the optimality and diversity of solutions. R2-IBEA successfully produces diverse individuals that are distributed weIl in the objective space. It is also empirically verified that R2-IBEA scales weIl from two-dimensional to five-dimensional problems.

[1]  G. G. Cameron,et al.  Genetic algorithm implementation of stack filter design for image restoration , 1996 .

[2]  Heike Trautmann,et al.  R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection , 2013, LION.

[3]  Kalyanmoy Deb,et al.  Self-adaptive simulated binary crossover for real-parameter optimization , 2007, GECCO '07.

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  Heike Trautmann,et al.  On the properties of the R2 indicator , 2012, GECCO '12.

[6]  Isao Hayashi,et al.  Leveraging indicator-based ensemble selection in evolutionary multiobjective optimization algorithms , 2012, GECCO '12.

[7]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[8]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored , 2009, Frontiers of Computer Science in China.

[9]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[10]  Bruce L. Golden,et al.  A Planning Heuristic for Military Airlift , 1992 .

[11]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[12]  Hamidreza Eskandari,et al.  Handling uncertainty in evolutionary multiobjective optimization: SPGA , 2007, 2007 IEEE Congress on Evolutionary Computation.

[13]  Bruce L. Golden,et al.  A transportation problem formulation for the MAC Airlift Planning problem , 1994, Ann. Oper. Res..

[14]  David P. Morton,et al.  Optimizing Military Airlift , 2002, Oper. Res..

[15]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[16]  Moshe B. Rosenwein,et al.  An interactive optimization system for bulk-cargo ship scheduling , 1989 .

[17]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[18]  Carlos A. Coello Coello,et al.  A ranking method based on the R2 indicator for many-objective optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[19]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[20]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[21]  Junichi Suzuki,et al.  A Non-parametric Statistical Dominance Operator for Noisy Multiobjective Optimization , 2012, SEAL.

[22]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[24]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[25]  Enrique Alba,et al.  The jMetal framework for multi-objective optimization: Design and architecture , 2010, IEEE Congress on Evolutionary Computation.

[26]  Rajendra S. Solanki,et al.  An Execution Planning Algorithm for Military Airlift , 1991 .

[27]  Harilaos N. Psaraftis,et al.  ANALYSIS AND SOLUTION ALGORITHMS OF SEALIFT ROUTING AND SCHEDULING PROBLEMS , 1985 .

[28]  Kay Chen Tan,et al.  Noise Handling in Evolutionary Multi-Objective Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[29]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[30]  Kwang Ryel Ryu,et al.  Accumulative sampling for noisy evolutionary multi-objective optimization , 2011, GECCO '11.

[31]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[32]  Lothar Thiele,et al.  SPAM: Set Preference Algorithm for Multiobjective Optimization , 2008, PPSN.

[33]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[34]  Lothar Thiele,et al.  Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.

[35]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[36]  Evan J. Hughes,et al.  Evolutionary Multi-objective Ranking with Uncertainty and Noise , 2001, EMO.

[37]  D. K. Bowen,et al.  Characterization of structures from X-ray scattering data using genetic algorithms , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Junichi Suzuki,et al.  SMSP-EMOA: Augmenting SMS-EMOA with the Prospect Indicator for Multiobjective Optimization , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[39]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[40]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[41]  Eckart Zitzler,et al.  A Preliminary Study on Handling Uncertainty in Indicator-Based Multiobjective Optimization , 2006, EvoWorkshops.

[42]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[43]  Qingfu Zhang,et al.  Combining Model-based and Genetics-based Offspring Generation for Multi-objective Optimization Using a Convergence Criterion , 2006, 2006 IEEE International Conference on Evolutionary Computation.