Scattered ultraviolet radiation in the upper stratosphere 2: Models and measurements

Scattered ultraviolet radiation in the 40 to 46 km altitude range is evaluated using an analytic, single-scattering description and results from the atmospheric ultraviolet radiance integrated code (AURIC). The calculations are compared with measurements obtained from a balloon-borne spectrometer at 1.5-nm resolution. The analytic approach is useful for approximating the angular and spectral dependence of scattered UV radiation; however, use of a single scale height to describe the vertical distribution of absorbers and scatterers leads to errors of 50% or greater at intermediate ozone opacities. Results from AURIC generally are compatible with the observations, particularly below 210 nm where large discrepancies have been noted in prior model/measurement comparisons.

[1]  W M Cornette Robust aflgorithm for correcting the layer problem in LOWTRAN. , 1992, Applied optics.

[2]  J. R. Evans,et al.  Teleseismic tomography of the Loma Prieta Earthquake Region, California: Implications for strain partitioning , 1995 .

[3]  D. K. Prinz,et al.  SUSIM/UARS observations of the 120 to 300 nm flux variations during the maximum of the solar cycle: Inferences for the 11-year cycle , 1992 .

[4]  Single and Multiple Scattered Solar Radiation , 1982 .

[5]  E. Shettle Models of aerosols, clouds, and precipitation for atmospheric propagation studies , 1990 .

[6]  Gail P. Anderson,et al.  Ultraviolet O2 transmittance - AURIC implementation , 1993, Optics & Photonics.

[7]  F. X. Kneizys,et al.  Users Guide to LOWTRAN 7 , 1988 .

[8]  J. Herman,et al.  The direct and scattered solar flux within the stratosphere , 1982 .

[9]  J. R. Esmond,et al.  Improved absorption cross-sections of oxygen in the wavelength region 205–240 nm of the Herzberg continuum , 1988 .

[10]  Arve Kylling,et al.  The 200‐ to 300‐nm radiation field in the stratosphere: Comparison of models with observation , 1993 .

[11]  F. X. Kneizys,et al.  Atmospheric transmittance/radiance: Computer code LOWTRAN 5 , 1978 .

[12]  Gail P. Anderson,et al.  Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5 cm - 1 resolution , 1992 .

[13]  J.-D. F. Bartoe,et al.  Absolute solar spectral irradiance 120 nm-400 nm (results from the solar ultraviolet spectral irradiance monitor-SUSIM-experiment on board Spacelab 2) , 1988 .

[14]  David W. Rusch,et al.  Scattered ultraviolet radiation in the upper stratosphere 1: Observations , 1995 .

[15]  M. McElroy,et al.  Absorption of solar radiation by O2 - Implications for O3 and lifetimes of N2O, CFCl3, and CF2Cl2 , 1993 .

[16]  F. X. Kneizys,et al.  MODTRAN2: suitability for remote sensing , 1993, Defense, Security, and Sensing.

[17]  G. Fiocco,et al.  Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K , 1989 .

[18]  M. Nicolet,et al.  On the molecular scattering in the terrestrial atmosphere : An empirical formula for its calculation in the homosphere , 1984 .

[19]  M. Nicolet,et al.  Aeronomic problems of molecular oxygen photodissociation. III - Solar spectral irradiances in the region of the O2 Herzberg continuum, Schumann-Runge bands and continuum. IV - The various parameters for the Herzberg continuum , 1988 .

[20]  M. Molina,et al.  Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range , 1986 .

[21]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[22]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[23]  R. J. Paur,et al.  The ultraviolet cross-sections of ozone. I. The measurements. II - Results and temperature dependence , 1985 .