The Kőnig graph process

Say that a graph G has property K if the size of its maximum matching is equal to the order of a minimal vertex cover. We study the following process. Set N := ( n 2 ) and let e1, e2, . . . eN be a uniformly random ordering of the edges of Kn, with n an even integer. Let G0 be the empty graph on n vertices. For m ≥ 0, Gm+1 is obtained from Gm by adding the edge em+1 exactly if Gm ∪ {em+1} has property K. We analyse the behaviour of this process, focusing mainly on two questions: What can be said about the structure of GN and for which m will Gm contain a perfect matching?

[1]  Benny Sudakov,et al.  On the Random Satisfiable Process , 2008, Combinatorics, Probability and Computing.

[2]  Benny Sudakov,et al.  The random k‐matching‐free process , 2017, Random Struct. Algorithms.

[3]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[4]  Xiequan Fan,et al.  Hoeffding’s inequality for supermartingales , 2011, 1109.4359.

[5]  Anusch Taraz,et al.  The random planar graph process , 2008, Random Struct. Algorithms.

[6]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[7]  Konstantinos Panagiotou,et al.  On the connectivity threshold of Achlioptas processes , 2014 .

[8]  B. Bollobás,et al.  Random Graphs of Small Order , 1985 .

[9]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[10]  Benny Sudakov,et al.  The randomk-matching-free process: KRIVELEVICHet al.. , 2018 .

[11]  A. RÉNY,et al.  ON THE EXISTENCE OF A FACTOR OF DEGREE ONE OF A CONNECTED RANDOM GRAPH , 2004 .

[12]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[13]  Tom Bohman,et al.  Dynamic concentration of the triangle‐free process , 2013, Random Struct. Algorithms.

[14]  J. Tropp FREEDMAN'S INEQUALITY FOR MATRIX MARTINGALES , 2011, 1101.3039.

[15]  A. Frieze ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS , 1988 .

[16]  Peter Winkler,et al.  On the Size of a Random Maximal Graph , 1995, Random Struct. Algorithms.

[17]  Peter Keevash,et al.  The early evolution of the H-free process , 2009, 0908.0429.

[18]  Nicholas C. Wormald,et al.  Random Graph Processes with Degree Restrictions , 1992, Combinatorics, Probability and Computing.

[19]  Alan M. Frieze,et al.  Avoiding a giant component , 2001, Random Struct. Algorithms.

[20]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[21]  Benny Sudakov,et al.  Hamiltonicity thresholds in Achlioptas processes , 2008, Random Struct. Algorithms.

[22]  Alan M. Frieze On large matchings and cycles in sparse random graphs , 1986, Discret. Math..

[23]  Robert Morris,et al.  The Triangle-Free Process and the Ramsey Number 𝑅(3,𝑘) , 2020 .

[24]  Guy Wolfovitz Lower Bounds for the Size of Random Maximal H-Free Graphs , 2009, Electron. J. Comb..

[25]  Gonzalo Fiz Pontiveros,et al.  The triangle-free process and R(3,k) , 2013 .

[26]  T. Bohman The triangle-free process , 2008, 0806.4375.