High-resolution trace element distributions and models of trace element diffusion in enamel of Late Neolithic/Early Chalcolithic human molars from the Rioja Alavesa region (north-central Spain) help to separate biogenic from diagenetic trends

[1]  D. Weis,et al.  Evaluating the impact of acetic acid chemical pre-treatment on ‘old’ and cremated bone with the ‘Perio-spot’ technique and ‘Perios-endos’ profiles , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[2]  K. Alt,et al.  Enamel mineralization and compositional time-resolution in human teeth evaluated via histologically-defined LA-ICPMS profiles , 2019, Geochimica et Cosmochimica Acta.

[3]  J. Lee-Thorp,et al.  Infant and childhood diet at the passage tomb of Alto de la Huesera (north‐central Iberia) from bone collagen and sequential dentine isotope composition , 2018 .

[4]  R. Schulting,et al.  Living different lives: Early social differentiation identified through linking mortuary and isotopic variability in Late Neolithic/ Early Chalcolithic north-central Spain , 2017, PloS one.

[5]  P. Claeys,et al.  Trace element analyses of carbonates using portable and micro-X-ray fluorescence: performance and optimization of measurement parameters and strategies , 2017 .

[6]  P. Claeys,et al.  Micro X‐ray fluorescence (μXRF) line scanning on Cretaceous rudist bivalves: A new method for reproducible trace element profiles in bivalve calcite , 2017 .

[7]  C. Snoeck,et al.  Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel , 2016, PloS one.

[8]  W. Müller,et al.  The Role of LA–ICP–MS in Palaeoclimate Research , 2016 .

[9]  J. Rinklebe,et al.  Trace Elements in Waterlogged Soils and Sediments , 2016 .

[10]  C. Snoeck,et al.  Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1—Impact on structure and chemical composition , 2015 .

[11]  C. Snoeck,et al.  Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment. , 2015, Rapid communications in mass spectrometry : RCM.

[12]  K. Harvati,et al.  Enamel thickness variation of deciduous first and second upper molars in modern humans and Neanderthals. , 2014, Journal of human evolution.

[13]  M. Kohn,et al.  Trace element diffusivities in bone rule out simple diffusive uptake during fossilization but explain in vivo uptake and release , 2012, Proceedings of the National Academy of Sciences.

[14]  G. Norman,et al.  Nonlinearity in the relationship between bone lead concentrations and CBLI for lead smelter employees. , 2012, Journal of environmental monitoring : JEM.

[15]  G. Obein,et al.  INVESTIGATING SEASONALITY AND SEASON OF BIRTH IN PAST HERDS: A REFERENCE SET OF SHEEP ENAMEL STABLE OXYGEN ISOTOPE RATIOS , 2012 .

[16]  V. Pashley,et al.  The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. , 2012, Rapid communications in mass spectrometry : RCM.

[17]  R. Donahue,et al.  Exploring the variation of the δ18Op and δ18Oc relationship in enamel increments , 2011 .

[18]  C. Dewdney,et al.  Fractionation of rare earth elements within bone mineral: a natural cation exchange system , 2011 .

[19]  C. Trueman,et al.  Protracted diagenetic alteration of REE contents in fossil bioapatites: Direct evidence from Lu–Hf isotope systematics , 2010 .

[20]  P. Dockery,et al.  Hunter‐Schreger Band patterns in human tooth enamel , 2010, Journal of anatomy.

[21]  S. Alqahtani,et al.  Brief communication: The London atlas of human tooth development and eruption. , 2010, American journal of physical anthropology.

[22]  J. Eiler,et al.  Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite , 2010, Proceedings of the National Academy of Sciences.

[23]  W. Müller,et al.  Achievable time resolution of compositional/isotopic LA-ICPMS profiles in human tooth enamel , 2009 .

[24]  H. Bocherens,et al.  Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad , 2008 .

[25]  M. Kohn Models of Diffusion-Limited Uptake of Trace Elements in Fossils and Rates of Fossilization , 2008 .

[26]  P. Reiners,et al.  Conodont (U–Th)/He thermochronology: Initial results, potential, and problems , 2007 .

[27]  W. Patterson,et al.  The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine , 2006 .

[28]  J. Lee-Thorp,et al.  Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements , 2006 .

[29]  H. Skinner,et al.  Biominerals , 2005, Mineralogical Magazine.

[30]  J. Pasteris,et al.  A mineralogical perspective on the apatite in bone , 2005 .

[31]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[32]  D. D. de Ruiter,et al.  Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. , 2005, Journal of human evolution.

[33]  A. Mariotti,et al.  Diagenesis and the reconstruction of paleoenvironments: A method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel , 2004 .

[34]  A. Lebugle,et al.  Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe , 2004 .

[35]  J. Lee-Thorp,et al.  Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies , 2003 .

[36]  C. C. Grant,et al.  DIETS OF SOUTHERN AFRICAN BOVIDAE: STABLE ISOTOPE EVIDENCE , 2003 .

[37]  S. Leigh,et al.  Determining sheep birth seasonality by analysis of tooth enamel oxygen isotope ratios: The Late Stone Age site of Kasteelberg (South Africa) , 2003 .

[38]  H. Bocherens,et al.  Ecological and physiological variability of Sr/Ca and Ba/Ca in mammals of West European mid-Würmian food webs , 2002 .

[39]  D. Cherniak Rare earth element diffusion in apatite , 2000 .

[40]  B. Barreiro,et al.  Differential diagenesis of strontium in archaeological human dental tissues , 2000 .

[41]  H. Bocherens,et al.  Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate , 2000, Paleobiology.

[42]  A. Subar,et al.  Dietary sources of nutrients among US adults, 1994 to 1996. , 1998, Journal of the American Dietetic Association.

[43]  S. Ambrose,et al.  Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan, Kenya. , 1997, Journal of human evolution.

[44]  R. Hedges,et al.  A diffusion-adsorption model of uranium uptake by archaeological bone , 1996 .

[45]  J. Burton,et al.  Nonlinearity in the relationship between bone Sr/Ca and diet: paleodietary implications. , 1995, American journal of physical anthropology.

[46]  J. Ezzo Zinc as a Paleodietary Indicator: An Issue of Theoretical Validity in Bone-Chemistry Analysis , 1994, American Antiquity.

[47]  G. Macho,et al.  Enamel thickness of human maxillary molars reconsidered. , 1993, American journal of physical anthropology.

[48]  G. A. Parks,et al.  Cd2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: Interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES) , 1992 .

[49]  R Z LeGeros,et al.  Calcium phosphates in oral biology and medicine. , 1991, Monographs in oral science.

[50]  J. Lee-Thorp,et al.  Aspects of the Chemistry of Modern and Fossil Biological Apatites , 1991 .

[51]  C. Williams,et al.  Uranium and thorium distributions in fossil bones from Olduvai Gorge, Tanzania and Kanam, Kenya , 1987 .

[52]  M. Schoeninger,et al.  Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage , 1984 .

[53]  E. Badone,et al.  Application of neutron activation analysis to the study of element concentration and exchange in fossil bones , 1982 .

[54]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[55]  David Zeitlin On a Class of Definite Integrals , 1968 .

[56]  M. Voorhies,et al.  Strontium in Fossil Bones and the Reconstruction of Food Chains , 1965, Science.

[57]  E. Underwood Trace Elements in Human and Animal Nutrition , 1956, Agronomy Journal.

[58]  E. Hunt,et al.  The permanent mandibular first molar: its calcification, eruption and decay. , 1955, American journal of physical anthropology.

[59]  W. Sutherland,et al.  LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin , 1905 .

[60]  J. Pasteris,et al.  Structural Water in Carbonated Hydroxylapatite and Fluorapatite: Confirmation by Solid State 2H NMR , 2011, Calcified Tissue International.

[61]  E. Cukrowska,et al.  Investigation of chemical changes in bone material from South African fossil hominid deposits , 2010 .

[62]  M. Dean,et al.  Technique and Application in Dental Anthropology: Micro spatial distributions of lead and zinc in human deciduous tooth enamel , 2008 .

[63]  Todd A. Ehlers,et al.  REVIEWS IN MINERALOGY AND GEOCHEMISTRY , 2005 .

[64]  P. Koch,et al.  Assessing the preservation of biogenic strontium in fossil bones and tooth enamel , 2003 .

[65]  N. Tuross,et al.  Trace elements in recent and fossil bone apatite , 2002 .

[66]  R. Legros,et al.  Structure and composition of the mineral phase of periosteal bone , 1986 .

[67]  F. Driessens,et al.  Diffusion in mammalian tooth enamel in relation to the caries process. , 1983, Archives of oral biology.

[68]  A. Sillen Strontium and diet at Hayonim Cave, Israel : an evaluation of the strontium/calcium technique for investigating prehistoric diet , 1981 .

[69]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[70]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[71]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .