Multifilled nanocrystalline p-type didymium – Skutterudites with ZT > 1.2
暂无分享,去创建一个
Peter Rogl | Stephan Puchegger | E. Bauer | P. Rogl | G. Rogl | A. Grytsiv | M. Zehetbauer | S. Puchegger | M. Kerber | Ernst Bauer | Gerda Rogl | Andriy Grytsiv | Michael Kerber | Michael J. Zehetbauer | A. Grytsiv
[1] Tiejun Zhu,et al. Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3 , 2007 .
[2] M. B. Maple,et al. Thermal expansion of skutterudites , 2010 .
[3] George S. Nolas,et al. High figure of merit in Eu-filled CoSb3-based skutterudites , 2002 .
[4] G. J. Snyder,et al. Complex thermoelectric materials. , 2008, Nature materials.
[5] A. Borshchevsky,et al. High figure of merit in Ce-filled skutterudites , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.
[6] Mukherjee,et al. Thermal expansion study of ordered and disordered Fe3Al: An effective approach for the determination of vibrational entropy. , 1996, Physical review letters.
[7] C. Uher,et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .
[8] C. Uher,et al. CERIUM FILLING AND DOPING OF COBALT TRIANTIMONIDE , 1997 .
[9] Han Li,et al. Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds CamCenFexCo4−xSb12 , 2006 .
[10] R. K. Williams,et al. Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.
[11] B. Sales,et al. FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .
[12] Filled skutterudite antimonides: Validation of the electron-crystal phonon-glass approach to new thermoelectric materials , 1997 .
[13] Ctirad Uher,et al. Skutterudite-Based Thermoelectrics , 2005 .
[14] Zhifeng Ren,et al. The great improvement effect of pores on ZT in Co1−xNixSb3 system , 2008 .
[15] Hannu Mutka,et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. , 2008, Nature materials.
[16] George S. Nolas,et al. Effect of partial void filling on the lattice thermal conductivity of skutterudites , 1998 .
[17] Jihui Yang,et al. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce and Sr) , 2007 .
[18] Takashi Goto,et al. Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .
[19] Berger,et al. Crystal field effects and thermoelectric properties of PrFe 4 Sb 12 skutterudite , 2002 .
[20] A. Grytsiv,et al. Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1−xCox)4Sb12 and DDy(Fe1−xNix)4Sb12 , 2010 .
[21] O. Anderson,et al. A simplified method for calculating the debye temperature from elastic constants , 1963 .
[22] Y. Pei,et al. Synthesis and Thermoelectric Properties of (Sr,Yb)yCo4Sb12 Double Filled Skutterudites , 2006, 2006 25th International Conference on Thermoelectrics.
[23] W. Jeitschko,et al. LaFe4P12 with filled CoAs3‐type structure and isotypic lanthanoid–transition metal polyphosphides , 1977 .
[24] Peter Rogl,et al. A new generation of p-type didymium skutterudites with high ZT , 2011 .
[25] C. Uher,et al. Low-temperature transport properties of the filled skutterudites CeFe 4-x Co x Sb 12 s , 1997 .
[26] L. D. Chen,et al. Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12 , 2006 .
[27] Lei Zhang,et al. Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties , 2004 .
[28] M. Dresselhaus,et al. New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .
[29] Jiong Yang,et al. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12 , 2009 .
[30] C. Uher,et al. Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members , 1998 .
[31] J. Gubicza,et al. MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions , 2001 .
[32] George S. Nolas,et al. High figure of merit in partially filled ytterbium skutterudite materials , 2000 .
[33] E. Bauer,et al. Thermoelectric performance of mischmetal skutterudites MmyFe4−xCoxSb12 at elevated temperatures , 2010 .
[34] G. Meisner,et al. Predication of an ultrahigh filling fraction for K in CoSb3 , 2006 .
[35] E. Bauer,et al. MmFe4Sb12- and CoSb3-based nano-skutterudites prepared by ball milling: Kinetics of formation and transport properties , 2009 .
[36] E. Bauer,et al. High thermoelectric performance of triple-filled n-type skutterudites (Sr,Ba,Yb)yCo4Sb12 , 2009 .
[37] Jingfeng Li,et al. Thermoelectric property of fine-grained CoSb3 skutterudite compound fabricated by mechanical alloying and spark plasma sintering , 2007 .
[38] H. Hng,et al. Synthesis and high temperature thermoelectric properties of calcium and cerium double-filled skutterudites Ca0.1CexCo4Sb12 , 2009 .
[39] H. Kabelka,et al. Mechanical properties of filled antimonide skutterudites , 2010 .
[40] Jihui Yang,et al. Thermoelectric Properties of n-Type Multiple-Filled Skutterudites , 2009 .
[41] G. A. Slack,et al. Some properties of semiconducting IrSb3 , 1994 .
[42] Tamás Ungár,et al. Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction , 2004 .
[43] D. Bérardan,et al. Double filling in skutterudites: A promising path to improved thermoelectric properties , 2006 .
[44] Yan Li,et al. Nanostructures and enhanced thermoelectric properties in Ce-filled skutterudite bulk materials , 2006 .