Changes in the Electrical Parameters of CdTe-based Crystals During Isothermal Annealing

We observed a novel unanticipated effect in CdTe, Cd1-xZnxTe and Cd1-xMnxTe crystals whilst we were measuring the dependences of several electrical properties (e.g., specific conductivity and free-carrier density) over time. During isothermal annealing under constant thermodynamic conditions (temperatures of 450- 500° C and under maximal cadmium-vapor pressure), we recorded a jump-like increase in the conductivity after some ~ 1 - 2 hours of heating required to stabilize the sample's electric parameters. The values of specific conductivity and free-carrier density suddenly increased by up to tenfold, and they persisted at those levels during further ageing. At the same time, the sample's conductivity became insensitive to stoichiometric changes in the crystal. We explain this effect as reflecting a sudden reformatting of the sample's native/foreign point-defect structure. This transformation is evaluated and mathematically approximated within the framework of our model of the melting of Te-containing second-phase particles; this process releases impurities from within the particles. The respective diffusion “clouds” grow, and at the moment of their mutual percolation (infiltration), a peculiar “short circuit” is observed with striking changes in the crystals' electrical parameters.

[1]  A. E. Bolotnikov,et al.  Effects of the networks of subgrain boundaries on spectral responses of thick CdZnTe detectors , 2011, Optical Engineering + Applications.

[2]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[3]  R. James,et al.  Array of Virtual Frisch-Grid CZT Detectors With Common Cathode Readout for Correcting Charge Signals and Rejection of Incomplete Charge-Collection Events , 2012, IEEE Transactions on Nuclear Science.

[4]  A. E. Bolotnikov,et al.  Elimination of Te Inclusions in ${\rm Cd}_{1-x}{\rm Zn}_{x}{\rm Te}$ Crystals by Short-term Thermal Annealing , 2012, IEEE Transactions on Nuclear Science.

[5]  Csaba Szeles,et al.  CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications , 2004 .

[6]  G. Milton The Theory of Composites , 2002 .

[7]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[9]  T. Feltgen,et al.  State of the art of (Cd,Zn)Te as gamma detector , 1999 .

[10]  R. Grill,et al.  Elimination of Inclusions in (CdZn)Te Substrates by Post-grown Annealing , 2007 .

[11]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[12]  A. Zappettini,et al.  Three-dimensional mapping of tellurium inclusions in CdZnTe crystals by means of improved optical microscopy , 2011 .

[13]  M. Fiederle,et al.  High temperature defect structure of Cd- and Te-rich CdTe , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[14]  W. Marsden I and J , 2012 .

[15]  K. T. Chung,et al.  Electrical permittivity and conductivity of carbon black‐polyvinyl chloride composites , 1982 .

[16]  A. Bolotnikov,et al.  Dopant Content and Thermal Treatment of ${\rm Cd} _{1-{\rm x}} {\rm Zn} _{\rm x} {\rm Te} \langle {\rm In}\rangle $: Effects on Point-Defect Structures , 2009, IEEE Transactions on Nuclear Science.

[17]  R. James,et al.  Temperature-gradient annealing of CdZnTe under Te overpressure , 2012 .

[18]  P. M. Fochuk,et al.  The nature of point defects in CdTe , 2006 .