The large scale polarization explorer (LSPE) for CMB measurements: performance forecast

The measurement of the polarization of the Cosmic Microwave Background (CMB) radiation is one of the current frontiers in cosmology. In particular, the detection of the primordial divergence-free component of the polarization field, the B-mode, could reveal the presence of gravitational waves in the early Universe. The detection of such a component is at the moment the most promising technique to probe the inflationary theory describing the very early evolution of the Universe. We present the updated performance forecast of the Large Scale Polarization Explorer (LSPE), a program dedicated to the measurement of the CMB polarization. LSPE is composed of two instruments: LSPE-Strip, a radiometer-based telescope on the ground in Tenerife-Teide observatory, and LSPE-SWIPE (Short-Wavelength Instrument for the Polarization Explorer) a bolometer-based instrument designed to fly on a winter arctic stratospheric long-duration balloon. The program is among the few dedicated to observation of the Northern Hemisphere, while most of the international effort is focused into ground-based observation in the Southern Hemisphere. Measurements are currently scheduled in Winter 2022/23 for LSPE-SWIPE, with a flight duration up to 15 days, and in Summer 2022 with two years observations for LSPE-Strip. We describe the main features of the two instruments, identifying the most critical aspects of the design, in terms of impact on the performance forecast. We estimate the expected sensitivity of each instrument and propagate their combined observing power to the sensitivity to cosmological parameters, including the effect of scanning strategy, component separation, residual foregrounds and partial sky coverage. We also set requirements on the control of the most critical systematic effects and describe techniques to mitigate their impact. LSPE will reach a sensitivity in tensor-to-scalar ratio of σ r < 0.01, set an upper limit r < 0.015 at 95% confidence level, and improve constraints on other cosmological parameters.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[3]  A. Ludwig The definition of cross polarization , 1973 .

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  J. Lamarre Photon noise in photometric instruments at far-infrared and submillimeter wavelengths. , 1986, Applied optics.

[6]  Field,et al.  Limits on a Lorentz- and parity-violating modification of electrodynamics. , 1990, Physical review. D, Particles and fields.

[7]  Andrea Boscaleri,et al.  Time-domain computer simulation program as first step of a full digital high-precision pointing system for platform in balloon-borne remote sensing , 1990, Optics & Photonics.

[8]  Andrea Boscaleri,et al.  Time domain design technique for high-precision full digital pointing system in balloon-borne remote infrared sensing , 1990 .

[9]  Natale,et al.  ARGO: a balloon-borne telescope for measurements of the millimeter diffuse sky emission , 1993 .

[10]  P. Bernardis,et al.  Balloon-borne 3He cryostat for millimetre bolometric photometry , 1994 .

[11]  V. Venturi,et al.  The ARGO experiment pointing system as an example for other single-axis platform pointing systems , 1994 .

[12]  Sarah E. Church Predicting residual levels of atmospheric sky noise in ground-based observations of the cosmic background radiation , 1995 .

[13]  James W. Lamb,et al.  Miscellaneous data on materials for millimetre and submillimetre optics , 1996 .

[14]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[15]  M. Limon,et al.  The Instituto de Astrofísica de Canarias-Bartol Cosmic Microwave Background Anisotropy Experiment: Results of the 1994 Campaign , 1997, astro-ph/9711225.

[16]  P. Bernardis,et al.  A long duration cryostat suitable for balloon borne photometry , 1999 .

[17]  A. Lasenby,et al.  The Tenerife Cosmic Microwave Background Maps: Observations and First Analysis , 1999, astro-ph/9903196.

[18]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[19]  Spain.,et al.  A measurement at the first acoustic peak of the cosmic microwave background with the 33‐GHz interferometer , 2000, astro-ph/0004357.

[20]  Max Tegmark,et al.  How to measure CMB polarization power spectra without losing information , 2001 .

[21]  et al,et al.  Archeops: a high resolution, large sky coverage balloon experiment for mapping cosmic microwave background anisotropies , 2001 .

[22]  V. V. Hristov,et al.  BOOMERANG: A Balloon-borne Millimeter-Wave Telescope and Total Power Receiver for Mapping Anisotropy in the Cosmic Microwave Background , 2002, astro-ph/0206254.

[23]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[24]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[25]  Federico Nati,et al.  A fast star sensor for balloon payloads , 2003 .

[26]  Elizabeth Waldram,et al.  First results from the Very Small Array — III. The cosmic microwave background power spectrum , 2002, astro-ph/0205380.

[27]  Elizabeth Waldram,et al.  First results from the Very Small Array - I. Observational methods , 2002, astro-ph/0205378.

[28]  P. Vielva,et al.  Limits on the detectability of the CMB B-mode polarization imposed by foregrounds , 2004, astro-ph/0411567.

[29]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[30]  S Masi,et al.  Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG , 2005, astro-ph/0507509.

[31]  K. Korolev,et al.  Complex Dielectric Measurements of Materials at Q- Band, V- Band and W- Band Frequencies with High Power Sources , 2005, 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings.

[32]  A. Melchiorri,et al.  A balloon-borne survey of the mm/sub-mm sky: OLIMPO , 2005 .

[33]  A. K. F. T. T. Collaboration Clover - A B-mode polarization experiment , 2006, astro-ph/0610716.

[34]  Searching for CPT violation with cosmic microwave background data from WMAP and BOOMERANG. , 2006, Physical review letters.

[35]  Observations of the cosmic microwave background and galactic foregrounds at 12–17-GHz with the COSMOSOMAS experiment , 2006, astro-ph/0601203.

[36]  P. Ade,et al.  Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization. , 2006, Applied optics.

[37]  Effect on cosmic microwave background polarization of coupling of quintessence to pseudoscalar formed from the electromagnetic field and its dual. , 2006, Physical review letters.

[38]  Soon Young Eom,et al.  A New Comb Circular Polarizer Suitable for Millimeter-Band Application , 2006 .

[39]  J. Aumont,et al.  Archeops in-flight performance, data processing, and map making , 2007 .

[40]  R. B. Barreiro,et al.  A low cosmic microwave background variance in the Wilkinson Microwave Anisotropy Probe data , 2008 .

[41]  S. Masi,et al.  PEGASO: An ultra light long duration stratospheric payload for polar regions flights , 2008 .

[42]  A. Melchiorri,et al.  A constraint on Planck-scale modifications to electrodynamics with CMB polarization data , 2009, 0904.3201.

[43]  Silvia Masi,et al.  CMB polarization systematics, cosmological birefringence, and the gravitational waves background , 2009, 0905.1651.

[44]  R. B. Barreiro,et al.  Anomalous variance in the WMAP data and Galactic foreground residuals , 2010, 1005.1264.

[45]  S. Masi,et al.  Polar Stratospheric Research Platforms -Ballooning in the Polar Regions , 2010 .

[46]  T. Montroy,et al.  Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism. , 2010, Applied optics.

[47]  A. Melchiorri,et al.  CMB neutrino mass bounds and reionization , 2010, 1010.5757.

[48]  P. A. R. Ade,et al.  CHARACTERIZATION OF THE BICEP TELESCOPE FOR HIGH-PRECISION COSMIC MICROWAVE BACKGROUND POLARIMETRY , 2009, 0906.4069.

[49]  I. Buder,et al.  FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 ⩽ ⩽ 475 , 2010, 1012.3191.

[50]  Kieran Cleary,et al.  Coherent polarimeter modules for the QUIET experiment , 2010, Astronomical Telescopes + Instrumentation.

[51]  Mario Zannoni,et al.  W-band prototype of platelet feed-horn array for CMB polarisation measurements , 2011, 1107.1157.

[52]  S. Masi,et al.  SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer , 2012, Other Conferences.

[53]  E. Dudas,et al.  CMB Imprints of a Pre-Inflationary Climbing Phase , 2012, 1202.6630.

[54]  I. Buder,et al.  SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz , 2012, 1207.5034.

[55]  S. Masi,et al.  The Large-Scale Polarization Explorer (LSPE) , 2012, Other Conferences.

[56]  S. Masi,et al.  Precision CMB measurements with long-duration stratospheric balloons: activities in the Arctic , 2012, Proceedings of the International Astronomical Union.

[57]  Adrian T. Lee,et al.  Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements. , 2011, The Review of scientific instruments.

[58]  Peter A. R. Ade,et al.  The Primordial Inflation Polarization Explorer (PIPER) , 2012, Other Conferences.

[59]  R. Tascone,et al.  A coherent polarimeter array for the Large Scale Polarization Explorer (LSPE) balloon experiment , 2012, Other Conferences.

[60]  G. Pisano,et al.  The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions , 2012, Other Conferences.

[61]  Bruno Maffei,et al.  A BROADBAND METAL-MESH HALF-WAVE PLATE FOR MILLIMETRE WAVE LINEAR POLARISATION ROTATION , 2012 .

[62]  F. Finelli,et al.  Low variance at large scales of WMAP 9 year data , 2013, 1304.5493.

[63]  R. B. Barreiro,et al.  Planck 2013 results. III. LFI systematic uncertainties , 2013, 1303.5064.

[64]  Joshua O. Gundersen,et al.  The Q/U Imaging ExperimenT Instrument , 2013 .

[65]  R. Tascone,et al.  Platelet Orthomode Transducer for $Q$-Band Correlation Polarimeter Clusters , 2014, IEEE transactions on microwave theory and techniques.

[66]  T. Chiueh,et al.  A 77-118 GHz RESONANCE-FREE SEPTUM POLARIZER , 2014, 1402.7329.

[67]  A. Sagnotti,et al.  Pre-inflationary clues from String Theory? , 2014, 1402.1418.

[68]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[69]  A.Gruppuso,et al.  Constraints on cosmological birefringence from Planck and Bicep2/Keck data , 2015, 1509.04157.

[70]  Thibaut Louis,et al.  Towards a cosmological neutrino mass detection , 2015, 1509.07471.

[71]  Glenn D. Starkman,et al.  CMB anomalies after Planck , 2015, 1510.07929.

[72]  A. Gruppuso,et al.  Pre-Inflationary Relics in the CMB? , 2015, 1508.00411.

[73]  G. Pisano,et al.  Metal mesh based metamaterials for millimetre wave and THz astronomy applications , 2015, 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT).

[74]  N. Krachmalnicoff CHALLENGES FOR PRESENT AND FUTURE COSMIC MICROWAVE BACKGROUND OBSERVATIONS: SYSTEMATIC EFFECTS AND FOREGROUND EMISSION IN POLARIZATION , 2015 .

[75]  R. Tascone,et al.  Q-band antenna-feed system for the Large Scale Polarization Explorer balloon experiment , 2015, 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[76]  A. Gruppuso,et al.  Observational Hints of a Pre--Inflationary Scale? , 2015, 1506.08093.

[77]  G. W. Pratt,et al.  Planck 2015 results: III. LFI systematic uncertainties , 2015, 1507.08853.

[78]  R. B. Barreiro,et al.  Planck 2013 results. IV. Low Frequency Instrument beams and window functions , 2013, 1303.5065.

[79]  A. Gilbert,et al.  The Polarbear-2 and the Simons Array Experiments , 2015, 1512.07299.

[80]  M. W. Ng,et al.  Large bandwidth mesh half-wave plates for millimetre and THz wave astronomy , 2015, 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[81]  Constraints on cosmological birefringence from PLANCK and Bicep2/Keck data , 2016 .

[82]  N. Jarosik,et al.  Systematic effects from an ambient-temperature, continuously rotating half-wave plate. , 2016, The Review of scientific instruments.

[83]  S. Oguri,et al.  GroundBIRD: Observing Cosmic Microwave Polarization at Large Angular Scale with Kinetic Inductance Detectors and High-Speed Rotating Telescope , 2015, Journal of Low Temperature Physics.

[84]  Peter A. R. Ade,et al.  The Primordial Inflation Polarization Explorer (PIPER) , 2010, Astronomical Telescopes + Instrumentation.

[85]  Bruno Maffei,et al.  Development of the multi-mode horn-lens configuration for the LSPE-SWIPE B-mode experiment , 2016, Astronomical Telescopes + Instrumentation.

[86]  A. G. Vieregg,et al.  BICEP3 performance overview and planned Keck Array upgrade , 2016, Astronomical Telescopes + Instrumentation.

[87]  Y. Longval,et al.  PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium , 2016 .

[88]  Ely D. Kovetz,et al.  The Quest for B Modes from Inflationary Gravitational Waves , 2015, 1510.06042.

[89]  A. Gruppuso,et al.  A note on the birefringence angle estimation in CMB data analysis , 2016, 1604.05202.

[90]  Gabriele Coppi,et al.  Developing a long duration 3He fridge for the LSPE-SWIPE instrument , 2016, Astronomical Telescopes + Instrumentation.

[91]  Ignacio Romero,et al.  Precipitable Water Vapour at the Canarian Observatories (Teide and Roque de los Muchachos) from routine GPS , 2016, Astronomical Telescopes + Instrumentation.

[92]  S. Masi,et al.  Multi-mode TES Bolometer Optimization for the LSPE-SWIPE Instrument , 2016 .

[93]  M. Biasotti,et al.  The front-end electronics of the LSPE-SWIPE experiment , 2016, Astronomical Telescopes + Instrumentation.

[94]  S. Utsunomiya,et al.  Design and Performance of a Prototype Polarization Modulator Rotational System for Use in Space Using a Superconducting Magnetic Bearing , 2016, IEEE Transactions on Applied Superconductivity.

[95]  Aamir Ali,et al.  The Cosmology Large Angular Scale Surveyor , 2016, Astronomical Telescopes + Instrumentation.

[96]  J. Aumont,et al.  Planck intermediate results. XLIX. Parity-violation constraints from polarization data , 2016, 1605.08633.

[97]  Radek Stompor,et al.  Forecasting performance of CMB experiments in the presence of complex foreground contaminations , 2016 .

[98]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[99]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[100]  B Smiley,et al.  A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry. , 2017, The Review of scientific instruments.

[101]  N. Jarosik,et al.  A double vacuum window mechanism for space-borne applications. , 2017, The Review of scientific instruments.

[102]  David Alonso,et al.  The Python Sky Model: software for simulating the Galactic microwave sky , 2016, 1608.02841.

[103]  R. W. Ogburn,et al.  Constraints on Primordial Gravitational Waves Using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season. , 2018, Physical review letters.

[104]  M. Halpern,et al.  SPIDER: CMB Polarimetry from the Edge of Space , 2017, Journal of Low Temperature Physics.

[105]  Davide Maino,et al.  Preliminary scanning strategy analysis for the LSPE-STRIP instrument , 2018, Astronomical Telescopes + Instrumentation.

[106]  N. Katayama,et al.  Instrumentally induced spurious polarization of a multi-layer half wave plate for a CMB polarization observation , 2018 .

[107]  Marco Grassi,et al.  The FDM readout for the LSPE/SWIPE TES bolometers , 2018, Astronomical Telescopes + Instrumentation.

[108]  Alessio Rocchi,et al.  The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds , 2018, Astronomical Telescopes + Instrumentation.

[109]  Lyman A. Page,et al.  Results from the Atacama B-mode Search (ABS) experiment , 2018, Journal of Cosmology and Astroparticle Physics.

[110]  S. Masi,et al.  Ultra high molecular weight polyethylene: Optical features at millimeter wavelengths , 2018, 1803.05228.

[111]  P. Bernardis,et al.  Winter long duration stratospheric balloons from Polar regions , 2018, 1810.05565.

[112]  A. Gruppuso,et al.  The evens and odds of CMB anomalies , 2017, Physics of the Dark Universe.

[113]  Paolo de Bernardis,et al.  A clamp and release system for superconducting magnetic bearings. , 2018, The Review of scientific instruments.

[114]  G. Bernardi,et al.  S–PASS view of polarized Galactic synchrotron at 2.3 GHz as a contaminant to CMB observations , 2018, Astronomy & Astrophysics.

[115]  S. Masi,et al.  Impact of polarized foregrounds on LSPE-SWIPE observations , 2018 .

[116]  Shaul Hanany,et al.  PICO - the probe of inflation and cosmic origins , 2018, Astronomical Telescopes + Instrumentation.

[117]  A. Mennella,et al.  Modelling the radiation pattern of a dual circular polarization system , 2019, Journal of Instrumentation.

[118]  C. Baccigalupi,et al.  Principal component analysis of the primordial tensor power spectrum , 2019, Journal of Cosmology and Astroparticle Physics.

[119]  Is the lack of power anomaly in the CMB correlated with the orientation of the Galactic plane , 2019 .

[120]  S. Masi,et al.  Balloon-borne Cosmic Microwave Background experiments , 2019, EPJ Web of Conferences.

[121]  R. B. Barreiro,et al.  Planck 2018 results , 2019, Astronomy & Astrophysics.

[122]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[123]  P. A. R. Ade,et al.  LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection , 2019, Journal of Low Temperature Physics.

[124]  S. Masi,et al.  The short wavelength instrument for the polarization explorer balloon-borne experiment: Polarization modulation issues , 2019, Astronomische Nachrichten.

[125]  A. Slosar,et al.  A unified pseudo-Cℓ framework , 2018, Monthly Notices of the Royal Astronomical Society.

[126]  School of Earth,et al.  Kinetic Inductance Detectors for the OLIMPO experiment: in-flight operation and performance , 2019, Journal of Cosmology and Astroparticle Physics.

[127]  M. Piendibene,et al.  A frequency domain multiplexing system to readout the TES bolometers on the LSPE/SWIPE experiment , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[128]  Federico Perini,et al.  Characterization of the Murchison Widefield Array Dipole with a UAV-mounted Test Source , 2019, 2019 13th European Conference on Antennas and Propagation (EuCAP).

[129]  N. Katayama,et al.  Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles from CMB experiments , 2019, Progress of Theoretical and Experimental Physics.

[130]  P. A. R. Ade,et al.  Kinetic inductance detectors for the OLIMPO experiment: design and pre-flight characterization , 2018, Journal of Cosmology and Astroparticle Physics.

[131]  A. Ramos,et al.  Cosmology with the Cosmic Microwave Background : Latest Results from the PLANCK satellite and the QUIJOTE experiment , 2019 .

[132]  P. de Bernardis,et al.  SWIPE Multi-mode Pixel Assembly Design and Beam Pattern Measurements at Cryogenic Temperature , 2020 .

[133]  Adrian T. Lee,et al.  Measurements of B -mode polarization of the cosmic microwave background from 500 square degrees of SPTpol data , 2019, Physical Review D.

[134]  F. Incardona Observing the Polarized Cosmic Microwave Background From the Earth: Scanning Strategy and Polarimeters Test for the Lspe/strip Instrument , 2020, 2009.01100.

[135]  J. Borrill,et al.  Planck constraints on the tensor-to-scalar ratio , 2020, Astronomy & Astrophysics.

[136]  R. B. Barreiro,et al.  Planck2018 results , 2020, Astronomy & Astrophysics.

[137]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz , 2020, Journal of Cosmology and Astroparticle Physics.

[138]  Chiko Otani,et al.  GroundBIRD: A CMB Polarization Experiment with MKID Arrays , 2020, Journal of Low Temperature Physics.

[139]  Luca Lamagna,et al.  A polarization modulator unit for the mid- and high-frequency telescopes of the LiteBIRD mission , 2020, Astronomical Telescopes + Instrumentation.

[140]  J. Delouis,et al.  Reionization optical depth determination from Planck HFI data with ten percent accuracy , 2019, Astronomy & Astrophysics.

[141]  Planck2018 results , 2020, Astronomy & Astrophysics.

[142]  P. A. R. Ade,et al.  Progress Report on the Large-Scale Polarization Explorer , 2020, Journal of Low Temperature Physics.

[143]  Mario Zannoni,et al.  Design and Verification of a Q-Band Test Source for UAV-Based Radiation Pattern Measurements , 2020, IEEE Transactions on Instrumentation and Measurement.

[144]  Y. Minami Determination of miscalibrated polarization angles from observed cosmic microwave background and foreground EB power spectra: Application to partial-sky observation , 2020, Progress of Theoretical and Experimental Physics.

[145]  M. Halpern,et al.  Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole , 2020, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X.

[146]  Absolute calibration of the polarisation angle for future CMB B-mode experiments from current and future measurements of the Crab nebula , 2019, EPJ Web of Conferences.

[147]  Paolo de Bernardis,et al.  A simple method to measure the temperature and levitation height of devices rotating at cryogenic temperatures. , 2020, The Review of scientific instruments.

[148]  M. Piendibene,et al.  Development and Testing of the FDM Read-Out of the TES Arrays Aboard the LSPE/SWIPE Balloon-Borne Experiment , 2020 .

[149]  P. Ade,et al.  The long duration cryogenic system of the OLIMPO balloon–borne experiment: Design and in–flight performance , 2020, Cryogenics.

[150]  Edward J. Wollack,et al.  Updated Design of the CMB Polarization Experiment Satellite LiteBIRD , 2020, Journal of Low Temperature Physics.

[151]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: DR4 maps and cosmological parameters , 2020, Journal of Cosmology and Astroparticle Physics.

[152]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[153]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[154]  P. Alam ‘K’ , 2021, Composites Engineering.

[155]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[156]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[157]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[158]  P. Alam ‘O’ , 2021, Composites Engineering: An A–Z Guide.

[159]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[160]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[161]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[162]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[163]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[164]  Adrian T. Lee,et al.  CMB-S4: Forecasting Constraints on Primordial Gravitational Waves , 2020, The Astrophysical Journal.

[165]  L. H. Arnaldi,et al.  QUBIC I: Overview and science program , 2020, Journal of Cosmology and Astroparticle Physics.