SAFT- γ force field for the simulation of molecular fluids 6: Binary and ternary mixtures comprising water, carbon dioxide, and n -alkanes

Abstract The SAFT- γ coarse graining methodology (Avendano et al., 2011) is used to develop force fields for the fluid-phase behaviour of binary and ternary mixtures comprising water, carbon dioxide, and n-alkanes. The effective intermolecular interactions between the coarse grained (CG) segments are directly related to macroscopic thermodynamic properties by means of the SAFT- γ equation of state for molecular segments represented with the Mie (generalised Lennard–Jones) intermolecular potential (Papaioannou et al., 2014). The unlike attractive interactions between the components of the mixtures are represented with a single adjustable parameter, which is shown to be transferable over a wide range of conditions. The SAFT- γ Mie CG force fields are used in molecular-dynamics simulations to predict the challenging (vapour + liquid) and (liquid + liquid) fluid-phase equilibria characterising these mixtures, and to study phenomena that are not accessible directly from the equation of state, such as the interfacial properties. The description of the fluid-phase equilibria and interfacial properties predicted with the SAFT- γ Mie force fields is in excellent agreement with the corresponding experimental data, and of comparable if not superior quality to that reported for the more sophisticated atomistic and united-atom models.

[1]  E. Voutsas,et al.  Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory , 2000 .

[2]  R. Craster,et al.  Superspreading: mechanisms and molecular design. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[3]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[4]  J. Elliott,et al.  Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. I. Homogeneous fluids. , 2013, The Journal of chemical physics.

[5]  Fèlix Llovell,et al.  Global fluid phase equilibria and critical phenomena of selected mixtures using the crossover soft-SAFT equation. , 2006, The journal of physical chemistry. B.

[6]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[7]  P. H. van Konynenburg,et al.  Critical lines and phase equilibria in binary van der Waals mixtures , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  P. Englezos,et al.  Vapor–liquid equilibrium of systems containing alcohols, water, carbon dioxide and hydrocarbons using SAFT , 2004 .

[9]  Hans Hasse,et al.  Molecular models for 267 binary mixtures validated by vapor–liquid equilibria: A systematic approach , 2009 .

[10]  Riki Kobayashi,et al.  Water Content of CO2 in Equilibrium With Liquid Water and/or Hydrates , 1987 .

[11]  J. Gross,et al.  Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins. , 2015, The journal of physical chemistry. B.

[12]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[13]  L. Vlček,et al.  Optimized unlike-pair interactions for water-carbon dioxide mixtures described by the SPC/E and EPM2 models. , 2011, Journal of Physical Chemistry B.

[14]  George Jackson,et al.  A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). , 2007, The Journal of chemical physics.

[15]  J. Barker,et al.  Perturbation Theory and Equation of State for Fluids. II. A Successful Theory of Liquids , 1967 .

[16]  J. Elliott Optimized step potential models for n-alkanes and benzene , 2002 .

[17]  C. Adjiman,et al.  SAFT-γ force field for the simulation of molecular fluids: 3. Coarse-grained models of benzene and hetero-group models of n-decylbenzene , 2012 .

[18]  E. Johansson,et al.  Monte Carlo simulations of equilibrium solubilities and structure of water in n-alkanes and polyethylene. , 2007, The Journal of chemical physics.

[19]  R. Stevenson,et al.  Fluid Phase Equilibria and critical phenomena for the dodecane-water and squalane-water systems at elevated temperatures and pressures , 1994 .

[20]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[21]  Zoppè,et al.  Computing power revolution and new algorithms: GP-GPUs, clouds and more: general discussion. , 2014, Faraday discussions.

[22]  P. Debenedetti,et al.  Monte Carlo simulations of high-pressure phase equilibria of CO2-H2O mixtures. , 2011, The journal of physical chemistry. B.

[23]  R. Wiebe,et al.  Vapor Phase Composition of Carbon Dioxide-Water Mixtures at Various Temperatures and at Pressures to 700 Atmospheres , 1941 .

[24]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[25]  Andrés Mejía,et al.  Force Fields for Coarse-Grained Molecular Simulations from a Corresponding States Correlation , 2014 .

[26]  Joachim Gross,et al.  An equation-of-state contribution for polar components : Quadrupolar molecules , 2005 .

[27]  H. D. Cochran,et al.  VAPOR-LIQUID PHASE COEXISTENCE OF ALKANE-CARBON DIOXIDE AND PERFLUOROALKANE-CARBON DIOXIDE MIXTURES , 1999 .

[28]  A. Galindo,et al.  Modelling the phase equilibria and excess properties of the water + carbon dioxide binary mixture , 2007 .

[29]  J. Elliott,et al.  Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces. , 2014, The Journal of chemical physics.

[30]  E. Maginn,et al.  Thermodynamic Properties of Supercritical Mixtures of Carbon Dioxide and Methane: A Molecular Simulation Study , 2014 .

[31]  C. Adjiman,et al.  SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes. , 2013, The journal of physical chemistry. B.

[32]  Hans Hasse,et al.  Molecular models of unlike interactions in fluid mixtures , 2005 .

[33]  Jadran Vrabec,et al.  Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method , 1992 .

[34]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[35]  J. García,et al.  Phase Equilibria, PVT Behavior, and Critical Phenomena in Carbon Dioxide + n-Alkane Mixtures Using the Perturbed-Chain Statistical Associating Fluid Theory Approach , 2004 .

[36]  E. Franck,et al.  Phasengleichgewichte und kritische Erscheinungen in binären Mischsystemen bis 1500 bar, CO2 mit n‐Octan, n‐Undecan, n‐Tridecan und n‐Hexadecan , 1967 .

[37]  Erich A. Müller,et al.  Coarse grained force field for the molecular simulation of natural gases and condensates , 2015 .

[38]  João A. P. Coutinho,et al.  Mutual solubilities of hydrocarbons and water with the CPA EoS , 2007 .

[39]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[40]  J. Richard Elliott,et al.  Phase diagrams for a multistep potential model of n-alkanes by discontinuous molecular dynamics and thermodynamic perturbation theory , 2002 .

[41]  J. Arons,et al.  The volumetric analysis and prediction of liquid-liquid-vapor equilibria in certain carbon dioxide + n-alkane systems , 1989 .

[42]  A. Galindo,et al.  The A in SAFT: developing the contribution of association to the Helmholtz free energy within a Wertheim TPT1 treatment of generic Mie fluids , 2015 .

[43]  Walter G Chapman,et al.  Correlation and Prediction of Water Content in Alkanes Using a Molecular Theory , 2011 .

[44]  P. Debenedetti,et al.  Recent advances in molecular simulation: A chemical engineering perspective , 2015 .

[45]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1 | NIST , 2013 .

[46]  M. Cismondi,et al.  Phase Equilibria of CO2 + n-Alkane Binary Systems in Wide Ranges of Conditions: Development of Predictive Correlations Based on Cubic Mixing Rules , 2012 .

[47]  G. Jackson,et al.  Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations. , 2014, Annual review of chemical and biomolecular engineering.

[48]  Amparo Galindo† and,et al.  Theoretical Examination of the Global Fluid Phase Behavior and Critical Phenomena in Carbon Dioxide + n-Alkane Binary Mixtures , 2002 .

[49]  Dominique Richon,et al.  Vapour-liquid equilibria in the carbon dioxide-water system, measurement and modelling from 278.2 to 318.2K , 2004 .

[50]  Gregory A. Voth,et al.  The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. , 2008, The Journal of chemical physics.

[51]  Claire S. Adjiman,et al.  A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments , 2008 .

[52]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[53]  L. Diamond,et al.  Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling , 2003 .

[54]  K. Gubbins,et al.  An Equation of State for Water from a Simplified Intermolecular Potential , 1995 .

[55]  George Jackson,et al.  Statistical associating fluid theory for chain molecules with attractive potentials of variable range , 1997 .

[56]  M. M. Piñeiro,et al.  Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach. , 2006, The Journal of chemical physics.

[57]  K. Tödheide,et al.  Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid–Wasser bis zu Drucken von 3500 bar , 1963 .

[58]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[59]  L. Vega,et al.  Critical behavior and partial miscibility phenomena in binary mixtures of hydrocarbons by the statistical associating fluid theory , 1998 .

[60]  George Jackson,et al.  Accurate statistical associating fluid theory for chain molecules formed from Mie segments. , 2013, The Journal of chemical physics.

[61]  Clare McCabe,et al.  Developing a predictive group-contribution-based SAFT-VR equation of state , 2009 .

[62]  Athanassios Z Panagiotopoulos,et al.  Atomistic molecular dynamics simulations of CO₂ diffusivity in H₂O for a wide range of temperatures and pressures. , 2014, The journal of physical chemistry. B.

[63]  Gustavo A Orozco,et al.  Optimization of intermolecular potential parameters for the CO2/H2O mixture. , 2014, The journal of physical chemistry. B.

[64]  M. Michelsen,et al.  Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 2. Cross-Associating and Multicomponent Systems , 2006 .

[65]  Molecular Simulation of Phase Equilibria for Water−n-Butane and Water−n-Hexane Mixtures , 2000 .

[66]  George Jackson,et al.  Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. , 2014, The Journal of chemical physics.

[67]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[68]  Masahiro Kato,et al.  Solubility of carbon dioxide in pentadecane, hexadecane, and pentadecane + hexadecane , 1993 .

[69]  H. Segura,et al.  Molar isopycnicity in heterogeneous binary mixtures , 2012 .

[70]  Amparo Galindo,et al.  Study of the high pressure phase behaviour of CO2+n-alkane mixtures using the SAFT-VR approach with transferable parameters , 2002 .

[71]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[72]  S. Takenouchi,et al.  The binary system H 2 O-CO 2 at high temperatures and pressures , 1964 .

[73]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[74]  J. Gross,et al.  Determining force field parameters using a physically based equation of state. , 2011, The journal of physical chemistry. B.

[75]  J. Elliott,et al.  Transferable Step Potentials for the Straight-Chain Alkanes, Alkenes, Alkynes, Ethers, and Alcohols , 2004 .

[76]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[77]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Water + n-Alkanes Using a Simplified SAFT Theory with Transferable Intermolecular Interaction Parameters , 1996 .

[78]  J. D. Hemptinne,et al.  Application to binary mixtures of a group contribution SAFT EOS (GC-SAFT) , 2005 .

[79]  Berend Smit,et al.  Simulating the critical behaviour of complex fluids , 1993, Nature.

[80]  George Jackson,et al.  SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide. , 2011, The journal of physical chemistry. B.

[81]  Philippe Ungerer,et al.  Applications of Molecular Simulation In the Oil and Gas Industry: Monte Carlo Methods , 2005 .

[82]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[83]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[84]  Frances E. Pereira,et al.  Transferable SAFT-VR models for the calculation of the fluid phase equilibria in reactive mixtures of carbon dioxide, water, and n-alkylamines in the context of carbon capture. , 2011, The journal of physical chemistry. B.

[85]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[86]  Edward J. Maginn,et al.  Force field comparison and thermodynamic property calculation of supercritical CO2 and CH4 using molecular dynamics simulations , 2014 .

[87]  E. A. Müller,et al.  Interfacial properties of selected binary mixtures containing n-alkanes , 2009 .

[88]  E. Brunner Fluid mixtures at high pressures IX. Phase separation and critical phenomena in 23 (n-alkane + water) mixtures , 1990 .

[89]  M. M. Piñeiro,et al.  Comprehensive Characterization of Interfacial Behavior for the Mixture CO2 + H2O + CH4: Comparison between Atomistic and Coarse Grained Molecular Simulation Models and Density Gradient Theory , 2014 .

[90]  J. Gross,et al.  Modeling the phase equilibria of hydrogen sulfide and carbon dioxide in mixture with hydrocarbons and water using the PCP-SAFT equation of state , 2010 .

[91]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[92]  A. Panagiotopoulos,et al.  Vapor+liquid equilibrium of water, carbon dioxide, and the binary system, water+carbon dioxide, from molecular simulation , 2000 .

[93]  Amparo Galindo,et al.  Prediction of the Salting-Out Effect of Strong Electrolytes on Water + Alkane Solutions , 2003 .

[94]  A. Galindo,et al.  Phase equilibria, excess properties, and henry's constants of the water + carbon dioxide binary mixture , 2007 .

[95]  A. Galindo,et al.  A corresponding-states framework for the description of the Mie family of intermolecular potentials , 2015 .

[96]  Walter G Chapman,et al.  Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions. , 2014, The Journal of chemical physics.

[97]  John S. Rowlinson,et al.  Liquids and liquid mixtures , 1959 .

[98]  A. Boutin,et al.  Molecular simulation applied to fluid properties in the oil and gas industry , 2007 .

[99]  G. Kontogeorgis,et al.  Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories , 2010 .

[100]  Andrew L. Ferguson,et al.  Solubility and molecular conformations of n-alkane chains in water. , 2009, The journal of physical chemistry. B.

[101]  T. R. Bott,et al.  The mutual solubilities of water with supercritical and liquid carbon dioxides , 1992 .

[102]  Karsten Pruess,et al.  CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar , 2003 .

[103]  Claire S. Adjiman,et al.  Simultaneous prediction of vapour-liquid and liquid-liquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-γ group contribution approach , 2011 .

[104]  G. Jackson,et al.  Describing the Properties of Chains of Segments Interacting Via Soft-Core Potentials of Variable Range with the SAFT-VR Approach , 1998 .

[105]  J. Gross,et al.  Grand Canonical Monte Carlo Simulations Guided by an Analytic Equation of State-Transferable Anisotropic Mie Potentials for Ethers. , 2015, The journal of physical chemistry. B.

[106]  M. Wertheim,et al.  Thermodynamic perturbation theory of polymerization , 1987 .

[107]  Dimitrios P. Tassios,et al.  An Equation of State for Associating Fluids , 1996 .

[108]  E. Maginn,et al.  Transport properties of carbon dioxide and methane from molecular dynamics simulations. , 2014, The Journal of chemical physics.

[109]  A. Vahid,et al.  Transferable intermolecular potentials for carboxylic acids and their phase behavior , 2010 .

[110]  A. Galindo,et al.  Prediction of binary intermolecular potential parameters for use in modelling fluid mixtures , 2008 .

[111]  E. A. Müller,et al.  Resolving Discrepancies in the Measurements of the Interfacial Tension for the CO2 + H2O Mixture by Computer Simulation. , 2014, The journal of physical chemistry letters.

[112]  R. Wiebe,et al.  The Solubility of Carbon Dioxide in Water at Various Temperatures from 12 to 40° and at Pressures to 500 Atmospheres. Critical Phenomena* , 1940 .

[113]  R. Scott,et al.  Static properties of solutions. Van der Waals and related models for hydrocarbon mixtures , 1970 .

[114]  Amparo Galindo,et al.  Experimental and molecular modeling study of the three-phase behavior of (n-decane + carbon dioxide + water) at reservoir conditions. , 2011, The journal of physical chemistry. B.

[115]  G. Jackson,et al.  SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range , 2015 .

[116]  Walter G Chapman,et al.  Examining the Consistency of Water Content Data in Alkanes Using the Perturbed-Chain Form of the Statistical Associating Fluid Theory Equation of State , 2014 .

[117]  Hans Hasse,et al.  A Set of Molecular Models for Symmetric Quadrupolar Fluids , 2001 .

[118]  F. Llovell,et al.  Capturing the solubility minima of n-alkanes in water by soft-SAFT. , 2009, The journal of physical chemistry. B.

[119]  Jianguo Liu,et al.  Critical properties of binary and ternary mixtures of hexane+methanol, hexane+carbon dioxide, methanol+carbon dioxide and hexane+carbon dioxide+methanol , 2003 .

[120]  C. McCabe,et al.  Phase behavior of dipolar associating fluids from the SAFT-VR+D equation of state. , 2007, The Journal of chemical physics.

[121]  E. A. Müller,et al.  Temperature-quench Molecular Dynamics Simulations for Fluid Phase Equilibria , 2005 .

[122]  J. Elliott,et al.  Evaluating perturbation contributions in SAFT models by comparing to molecular simulation of n-alkanes , 2011 .

[123]  Andrés Mejía,et al.  Use of Equations of State and Coarse Grained Simulations to Complement Experiments: Describing the Interfacial Properties of Carbon Dioxide + Decane and Carbon Dioxide + Eicosane Mixtures , 2014 .

[124]  K. Gubbins,et al.  Phase equilibria of associating fluids : spherical molecules with multiple bonding sites , 1988 .

[125]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[126]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[127]  Claire S. Adjiman,et al.  Modeling the Fluid Phase Behavior of Carbon Dioxide in Aqueous Solutions of Monoethanolamine Using Transferable Parameters with the SAFT-VR Approach , 2010 .

[128]  K. Binder,et al.  Phase behavior of n-alkanes in supercritical solution: a Monte Carlo study. , 2004, The Journal of chemical physics.

[129]  E. Santiso,et al.  Modelling the interfacial behaviour of dilute light-switching surfactant solutions. , 2015, Journal of colloid and interface science.

[130]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[131]  H. Segura,et al.  A topological approach to mass barotropic phenomena in asymmetric mixtures , 2012 .

[132]  J. D. Hemptinne,et al.  Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series , 2004 .

[133]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[134]  Jeffrey J. Potoff,et al.  Molecular simulation of phase equilibria for mixtures of polar and non-polar components , 1999 .

[135]  E. Voutsas,et al.  Prediction of Phase Equilibria in Binary Aqueous Systems Containing Alkanes, Cycloalkanes, and Alkenes with the Cubic-plus-Association Equation of State , 1998 .

[136]  Kenneth R. Hall,et al.  An algebraic method that includes Gibbs minimization for performing phase equilibrium calculations for any number of components or phases , 2003 .

[137]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[138]  George Jackson,et al.  Phase equilibria of associating fluids , 2006 .