Separated response surfaces for flows in parametrised domains: comparison of a priori and a posteriori PGD algorithms

Reduced order models (ROM) are commonly employed to solve parametric problems and to devise inexpensive response surfaces to evaluate quantities of interest in real-time. There are many families of ROMs in the literature and choosing among them is not always a trivial task. This work presents a comparison of the performance of a priori and a posteriori proper generalised decomposition (PGD) algorithms for an incompressible Stokes flow problem in a geometrically parametrised domain. This problem is particularly challenging as the geometric parameters affect both the solution manifold and the computational spatial domain. The difficulty is further increased because multiple geometric parameters are considered and extended ranges of values are analysed for the parameters and this leads to significant variations in the flow features. Using a set of numerical experiments involving geometrically parametrised microswimmers, the two PGD algorithms are extensively compared in terms of their accuracy and their computational cost, expressed as a function of the number of full-order solves required.

[1]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[2]  C. Gogu,et al.  Efficient surrogate construction by combining response surface methodology and reduced order modeling , 2013, Structural and Multidisciplinary Optimization.

[3]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[4]  Piotr Breitkopf,et al.  Model reduction by CPOD and Kriging , 2010 .

[5]  A. J. Gil,et al.  A unified approach for a posteriori high-order curved mesh generation using solid mechanics , 2016 .

[6]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[7]  Francisco Chinesta,et al.  Monitoring a PGD solver for parametric power flow problems with goal‐oriented error assessment , 2017 .

[8]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[9]  Piotr Breitkopf,et al.  ‘On-the-fly’ snapshots selection for Proper Orthogonal Decomposition with application to nonlinear dynamics , 2020 .

[10]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[11]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[12]  Bernardo Cockburn,et al.  A Comparison of HDG Methods for Stokes Flow , 2010, J. Sci. Comput..

[13]  David Néron,et al.  Integration of PGD-virtual charts into an engineering design process , 2016 .

[14]  Gianluigi Rozza,et al.  Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications , 2014 .

[15]  A. Quarteroni,et al.  Shape optimization for viscous flows by reduced basis methods and free‐form deformation , 2012 .

[16]  J. Avron,et al.  Pushmepullyou: an efficient micro-swimmer , 2005, math-ph/0501049.

[17]  Antonio Huerta,et al.  HDG-NEFEM with Degree Adaptivity for Stokes Flows , 2018, Journal of Scientific Computing.

[18]  Piotr Breitkopf,et al.  Diffuse response surface model based on moving Latin hypercube patterns for reliability-based design optimization of ultrahigh strength steel NC milling parameters , 2011 .

[19]  Francisco Chinesta,et al.  Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data , 2018, Archives of Computational Methods in Engineering.

[20]  Charbel Farhat,et al.  Progressive construction of a parametric reduced‐order model for PDE‐constrained optimization , 2014, ArXiv.

[21]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[22]  Francisco Chinesta,et al.  A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity , 2016, Archives of Computational Methods in Engineering.

[23]  P. Breitkopf,et al.  A manifold learning-based reduced order model for springback shape characterization and optimization in sheet metal forming , 2015 .

[24]  Francisco Chinesta,et al.  Non-intrusive Sparse Subspace Learning for Parametrized Problems , 2019 .

[25]  Francisco Chinesta,et al.  Data-driven non-linear elasticity: constitutive manifold construction and problem discretization , 2017 .

[26]  Marino Arroyo,et al.  Nonlinear manifold learning for model reduction in finite elastodynamics , 2013 .

[27]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[28]  Weihong Zhang,et al.  Extended Co-Kriging interpolation method based on multi-fidelity data , 2018, Appl. Math. Comput..

[29]  Antonio Huerta,et al.  Solution of geometrically parametrised problems within a CAD environment via model order reduction , 2020, Computer Methods in Applied Mechanics and Engineering.

[30]  Francisco Chinesta,et al.  Algebraic and Parametric Solvers for the Power Flow Problem: Towards Real-Time and Accuracy-Guaranteed Simulation of Electric Systems , 2017, Archives of Computational Methods in Engineering.

[31]  P. Villon,et al.  Towards simultaneous reduction of both input and output spaces for interactive simulation-based structural design , 2013 .

[32]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[33]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[34]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[35]  Antonio Huerta,et al.  Encapsulated PGD Algebraic Toolbox Operating with High-Dimensional Data , 2020 .

[36]  N. S. Hoang,et al.  A Low-Cost , 1997 .

[37]  C. Farhat,et al.  A low‐cost, goal‐oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems , 2011 .

[38]  Michele Conti,et al.  A nonintrusive proper generalized decomposition scheme with application in biomechanics , 2018 .

[39]  Francisco Chinesta,et al.  A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition , 2018, Complex..

[40]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[41]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[42]  D. González,et al.  kPCA-Based Parametric Solutions Within the PGD Framework , 2017 .

[43]  P. Villon,et al.  Nonlinear Shape-Manifold Learning Approach: Concepts, Tools and Applications , 2016, Archives of Computational Methods in Engineering.

[44]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[45]  Antonio Huerta,et al.  Hybridisable discontinuous Galerkin solution of geometrically parametrised Stokes flows , 2020, ArXiv.

[46]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[47]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[48]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[49]  Piotr Breitkopf,et al.  Multidisciplinary Design Optimization in Computational Mechanics , 2013 .

[50]  Sergio Zlotnik,et al.  Algebraic PGD for tensor separation and compression: An algorithmic approach , 2018, Comptes Rendus Mécanique.

[51]  S. P. van den Bosch,et al.  Model reduction methods , 1993 .

[52]  Jean-Antoine Désidéri,et al.  Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations , 2000 .

[53]  P. Villon,et al.  Moving least squares response surface approximation: Formulation and metal forming applications , 2005 .

[54]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[55]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[56]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[57]  Pedro Díez,et al.  Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications , 2015 .

[58]  K. Morgan,et al.  The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .

[59]  Juan J. Alonso,et al.  Airfoil design optimization using reduced order models based on proper orthogonal decomposition , 2000 .

[60]  Antonio Huerta,et al.  Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in OpenFOAM , 2019, Comput. Phys. Commun..

[61]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[62]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[63]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[64]  A. Huerta,et al.  Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation , 2015 .

[65]  Francisco-Javier Sayas,et al.  Analysis of HDG methods for Stokes flow , 2010, Math. Comput..

[66]  Antonio Huerta,et al.  Tutorial on Hybridizable Discontinuous Galerkin (HDG) Formulation for Incompressible Flow Problems , 2019, ArXiv.

[67]  Antonio Huerta,et al.  A regularised-adaptive Proper Generalised Decomposition implementation for coupled magneto-mechanical problems with application to MRI scanners , 2020 .

[68]  Pedro Díez,et al.  Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD) , 2018 .

[69]  Bernardo Cockburn,et al.  Devising HDG methods for Stokes flow: An overview , 2014 .

[70]  Kurt Maute,et al.  A multi-point reduced-order modeling approach of transient structural dynamics with application to robust design optimization , 2009 .

[71]  Elías Cueto,et al.  Real‐time monitoring of thermal processes by reduced‐order modeling , 2015 .

[72]  Antonio Huerta,et al.  A Superconvergent HDG Method for Stokes Flow with Strongly Enforced Symmetry of the Stress Tensor , 2018, Journal of Scientific Computing.

[73]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[74]  A. Huerta,et al.  Parametric solutions involving geometry: A step towards efficient shape optimization , 2014 .

[75]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[76]  Antonio Huerta,et al.  Generalized parametric solutions in Stokes flow , 2017, 1704.02817.