Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme

This study develops an explicit two-step Lagrangian scheme based on the renewal-reward process to capture transient anomalous diffusion with mixed retention and early arrivals in multidimensional media. The resulting 3-D anomalous transport simulator provides a flexible platform for modeling transport. The first step explicitly models retention due to mass exchange between one mobile zone and any number of parallel immobile zones. The mobile component of the renewal process can be calculated as either an exponential random variable or a preassigned time step, and the subsequent random immobile time follows a Hyper-exponential distribution for finite immobile zones or a tempered stable distribution for infinite immobile zones with an exponentially tempered power-law memory function. The second step describes well-documented early arrivals which can follow streamlines due to mechanical dispersion using the method of subordination to regional flow. Applicability and implementation of the Lagrangian solver are further checked against transport observed in various media. Results show that, although the time-nonlocal model parameters are predictable for transport with retention in alluvial settings, the standard time-nonlocal model cannot capture early arrivals. Retention and early arrivals observed in porous and fractured media can be efficiently modeled by our Lagrangian solver, allowing anomalous transport to be incorporated into 2-D/3-D models with irregular flow fields. Extensions of the particle-tracking approach are also discussed for transport with parameters conditioned on local aquifer properties, as required by transient flow and nonstationary media.

[1]  B. Berkowitz,et al.  Interpretation and nonuniqueness of CTRW transition distributions: Insights from an alternative solute transport formulation , 2014 .

[2]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[3]  Rémi Abgrall,et al.  Water wave propagation in unbounded domains. Part II: Numerical methods for fractional PDEs , 2014, J. Comput. Phys..

[4]  Rina Schumer,et al.  Incorporating Super-Diffusion due to Sub-Grid Heterogeneity to Capture Non-Fickian Transport. , 2015, Ground water.

[5]  Peter K. Kitanidis,et al.  Macroscopic behavior and random‐walk particle tracking of kinetically sorbing solutes , 2000 .

[6]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[7]  Alberto Guadagnini,et al.  Origins of Anomalous Transport in Disordered Media: Structural and Dynamic Controls , 2013, 1305.2278.

[8]  A. Metcalfe,et al.  Managing river flow in arid regions with matrix analytic methods , 2010 .

[9]  Li Li,et al.  Solute transport in low‐heterogeneity sandboxes: The role of correlation length and permeability variance , 2014 .

[10]  D. Benson,et al.  Radial fractional‐order dispersion through fractured rock , 2004 .

[11]  David A. Benson,et al.  Subordinated advection‐dispersion equation for contaminant transport , 2001 .

[12]  M. Dentz,et al.  Modeling non‐Fickian transport in geological formations as a continuous time random walk , 2006 .

[13]  S. Gorelick,et al.  Rate‐limited mass transfer or macrodispersion: Which dominates plume evolution at the macrodispersion experiment (MADE) site? , 2000 .

[14]  On diffusion in fractal porous media , 1991 .

[15]  Steven F. Carle,et al.  Connected-network paradigm for the alluvial aquifer system , 2000 .

[16]  Brian Berkowitz,et al.  Theory of anomalous chemical transport in random fracture networks , 1998 .

[17]  Rina Schumer,et al.  Fractal mobile/immobile solute transport , 2003 .

[18]  M. Dentz,et al.  Transport behavior of a passive solute in continuous time random walks and multirate mass transfer , 2003 .

[19]  Allen G. Hunt,et al.  What's wrong with soil physics? , 2013 .

[20]  Paul W. Reimus,et al.  Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced‐gradient test , 2003 .

[21]  M. Kavvas,et al.  Generalized Fick's Law and Fractional ADE for Pollution Transport in a River: Detailed Derivation , 2006 .

[22]  Liliana Di Pietro,et al.  A time fractional model to represent rainfall process , 2012 .

[23]  Alberto Guadagnini,et al.  Origins of anomalous transport in heterogeneous media: Structural and dynamic controls , 2014 .

[24]  Tanguy Le Borgne,et al.  Lagrangian statistical model for transport in highly heterogeneous velocity fields. , 2008, Physical review letters.

[25]  Mark M. Meerschaert,et al.  Triangular array limits for continuous time random walks , 2008 .

[26]  Rina Schumer,et al.  Fractional advection‐dispersion equations for modeling transport at the Earth surface , 2009 .

[27]  Vasily E. Tarasov,et al.  Flow of fractal fluid in pipes: Non-integer dimensional space approach , 2014, 1503.02842.

[28]  Alexander N. Sukhodolov,et al.  Experimental and numerical validation of the dead-zone model for longitudinal dispersion in rivers , 1998 .

[29]  Christoph Hinz,et al.  Non‐Fickian transport in homogeneous unsaturated repacked sand , 2004 .

[30]  Modeling Arsenic Sorption in the Subsurface with a Dual‐Site Model , 2011, Ground water.

[31]  Zhongbo Yu,et al.  Improved understanding of bimolecular reactions in deceptively simple homogeneous media: From laboratory experiments to Lagrangian quantification , 2014 .

[32]  J. Quastel,et al.  Diffusion theory for transport in porous media: Transition‐probability densities of diffusion processes corresponding to advection‐dispersion equations , 1998 .

[33]  Charles F. Harvey,et al.  Temporal Moment‐Generating Equations: Modeling Transport and Mass Transfer in Heterogeneous Aquifers , 1995 .

[34]  M. Dentz,et al.  Delay mechanisms of non‐Fickian transport in heterogeneous media , 2006 .

[35]  Fractional dynamics of tracer transport in fractured media from local to regional scales , 2013 .

[36]  Jiazhong Qian,et al.  Experimental Study of the Non-Darcy Flow and Solute Transport in a Channeled Single Fracture , 2011 .

[37]  B. Berkowitz,et al.  Anomalous Transport in “Classical” Soil and Sand Columns , 2004, Soil Science Society of America Journal.

[38]  Donald L. Sparks,et al.  Residence time effects on arsenate adsorption/desorption mechanisms on goethite , 2001 .

[39]  K. H. Coats,et al.  Dead-End Pore Volume and Dispersion in Porous Media , 1964 .

[40]  Donald M. Reeves,et al.  Transport of conservative solutes in simulated fracture networks: 2. Ensemble solute transport and the correspondence to operator‐stable limit distributions , 2008 .

[41]  M. K. Landon,et al.  Accuracy of travel time distribution (TTD) models as affected by TTD complexity, observation errors, and model and tracer selection , 2014 .

[42]  Boris Baeumer,et al.  Predicting the Tails of Breakthrough Curves in Regional‐Scale Alluvial Systems , 2007, Ground water.

[43]  D. Benson,et al.  Eulerian derivation of the fractional advection-dispersion equation. , 2001, Journal of contaminant hydrology.

[44]  X. Sanchez‐Vila,et al.  On matrix diffusion: formulations, solution methods and qualitative effects , 1998 .

[45]  E. Çinlar Markov renewal theory , 1969, Advances in Applied Probability.

[46]  Brian Berkowitz,et al.  Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport , 2003 .

[47]  Yong Zhang,et al.  Particle tracking for fractional diffusion with two time scales , 2010, Comput. Math. Appl..

[48]  V. Cvetkovic The tempered one-sided stable density: a universal model for hydrological transport? , 2011 .

[49]  D. Benson,et al.  Hydraulic conductivity, velocity, and the order of the fractional dispersion derivative in a highly heterogeneous system , 2002 .

[50]  A. Binley,et al.  Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties , 2013 .

[51]  Diogo Bolster,et al.  Anomalous mixing and reaction induced by superdiffusive nonlocal transport. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Rina Schumer,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[53]  David A. Benson,et al.  A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations , 2009 .

[54]  C. Tsang,et al.  Flow channeling in heterogeneous fractured rocks , 1998 .

[55]  Hans-Peter Scheffler,et al.  Random walk approximation of fractional-order multiscaling anomalous diffusion. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  E. Lajeunesse,et al.  Bedload transport of a bimodal sediment bed , 2012 .

[57]  B. Berkowitz Characterizing flow and transport in fractured geological media: A review , 2002 .

[58]  Hongbin Zhan,et al.  Experimental study of solute transport under non-Darcian flow in a single fracture , 2011 .

[59]  Vijay P. Singh,et al.  Numerical Solution of Fractional Advection-Dispersion Equation , 2004 .

[60]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[61]  A. Packman,et al.  Stochastic modeling of fine particulate organic carbon dynamics in rivers , 2014 .

[62]  J. Bruining,et al.  Understanding the Non-Gaussian Nature of Linear Reactive Solute Transport in 1D and 2D , 2011, Transport in Porous Media.

[63]  V E Lynch,et al.  Nondiffusive transport in plasma turbulence: a fractional diffusion approach. , 2005, Physical review letters.

[64]  M. Dentz,et al.  Distribution- versus correlation-induced anomalous transport in quenched random velocity fields. , 2010, Physical review letters.

[65]  Brian Berkowitz,et al.  Particle tracking model of bimolecular reactive transport in porous media , 2010 .

[66]  D. Benson,et al.  Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications , 2009 .

[67]  Brian Berkowitz,et al.  Modeling bimolecular reactions and transport in porous media , 2008 .

[68]  M. Meerschaert,et al.  Heavy‐tailed log hydraulic conductivity distributions imply heavy‐tailed log velocity distributions , 2006 .

[69]  Yong Zhang,et al.  Linking aquifer spatial properties and non-Fickian transport in mobile–immobile like alluvial settings , 2014 .

[70]  R. Haggerty,et al.  Transport with multiple-rate exchange in disordered media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Timothy R. Ginn,et al.  Fractional advection‐dispersion equation: A classical mass balance with convolution‐Fickian Flux , 2000 .

[72]  D. Benson,et al.  Operator Lévy motion and multiscaling anomalous diffusion. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  Sean Andrew McKenna,et al.  On the late‐time behavior of tracer test breakthrough curves , 2000 .

[74]  Rina Schumer,et al.  Multiscaling fractional advection‐dispersion equations and their solutions , 2003 .

[75]  S. Gorelick,et al.  Multiple‐Rate Mass Transfer for Modeling Diffusion and Surface Reactions in Media with Pore‐Scale Heterogeneity , 1995 .

[76]  C. Zheng,et al.  A dual‐domain mass transfer approach for modeling solute transport in heterogeneous aquifers: Application to the Macrodispersion Experiment (MADE) site , 2000 .

[77]  Georg Kosakowski,et al.  Anomalous transport of colloids and solutes in a shear zone. , 2004, Journal of contaminant hydrology.

[78]  Graham E. Fogg,et al.  Role of Molecular Diffusion in Contaminant Migration and Recovery in an Alluvial Aquifer System , 2001 .

[79]  Igor M. Sokolov,et al.  Non-uniqueness of the first passage time density of Lévy random processes , 2004 .

[80]  Philippe Gouze,et al.  Non‐Fickian dispersion in porous media: 2. Model validation from measurements at different scales , 2008 .

[81]  Henk C. Tijms,et al.  A First Course in Stochastic Models: Tijms/Stochastic Models , 2003 .

[82]  Frederick Delay,et al.  Simulating Solute Transport in Porous or Fractured Formations Using Random Walk Particle Tracking: A Review , 2005 .

[83]  Graham E. Fogg,et al.  Random-Walk Simulation of Transport in Heterogeneous Porous Media: Local Mass-Conservation Problem and Implementation Methods , 1996 .

[84]  J. Dracup,et al.  On the generation of drought events using an alternating renewal-reward model , 1992 .

[85]  G. Waychunas,et al.  Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation , 1993 .

[86]  David A. Benson,et al.  Space‐fractional advection‐dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data , 2007 .

[87]  Hongguang Sun,et al.  Understanding partial bed-load transport: Experiments and stochastic model analysis , 2015 .

[88]  Timothy R. Ginn,et al.  Nonequilibrium statistical mechanics of preasymptotic dispersion , 1994 .

[89]  David A. Benson,et al.  Simulation of chemical reaction via particle tracking: Diffusion‐limited versus thermodynamic rate‐limited regimes , 2008 .

[90]  David A. Benson,et al.  Space-fractional advection-dispersion equations with variable parameters : Diverse formulas , numerical solutions , and application to the MADE-site data , 2007 .

[91]  M. Haase,et al.  Unbounded functional calculus for bounded groups with applications , 2009 .

[92]  M. Ronayne Influence of conduit network geometry on solute transport in karst aquifers with a permeable matrix , 2013 .

[93]  Fred J. Molz,et al.  A physical interpretation for the fractional derivative in Levy diffusion , 2002, Appl. Math. Lett..

[94]  Donald M. Reeves,et al.  Transport of conservative solutes in simulated fracture networks: 1. Synthetic data generation , 2008 .

[95]  Vijay P. Singh,et al.  Parameter estimation for fractional dispersion model for rivers , 2006 .

[96]  Peter Salamon,et al.  Modeling mass transfer processes using random walk particle tracking , 2006 .

[97]  M. Dentz,et al.  Scaling and predicting solute transport processes in streams , 2013 .

[98]  Boris Baeumer,et al.  Particle tracking for time-fractional diffusion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  E. Foufoula‐Georgiou,et al.  A nonlocal theory of sediment buffering and bedrock channel evolution , 2008 .

[100]  X. Sanchez‐Vila,et al.  On the formation of breakthrough curves tailing during convergent flow tracer tests in three‐dimensional heterogeneous aquifers , 2013 .

[101]  M. Meerschaert,et al.  Tempered anomalous diffusion in heterogeneous systems , 2008 .

[102]  B. Berkowitz,et al.  Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. , 2003, Journal of contaminant hydrology.