A locking-free face-centred finite volume (FCFV) method for linear elasticity

A face-centred finite volume (FCFV) method is proposed for the linear elasticity equation. The FCFV is a mixed hybrid formulation, featuring a system of first-order equations, that defines the unknowns on the faces (edges in two dimensions) of the mesh elements. The symmetry of the stress tensor is strongly enforced using the well-known Voigt notation and the displacement and stress fields inside each cell are obtained element-wise by means of explicit formulas. The resulting FCFV method is robust and locking-free in the nearly incompressible limit. Numerical experiments in two and three dimensions show optimal convergence of the displacement and the stress fields without any reconstruction. Moreover, the accuracy of the FCFV method is not sensitive to mesh distortion and stretching. Classical benchmark tests including Kirch's plate and Cook's membrane problems in two dimensions as well as three dimensional problems involving shear phenomenons, pressurised thin shells and complex geometries are presented to show the capability and potential of the proposed methodology.

[1]  J. Nordbotten,et al.  Finite volume methods for elasticity with weak symmetry , 2015, 1512.01042.

[2]  J. Nordbotten Cell‐centered finite volume discretizations for deformable porous media , 2014 .

[3]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[4]  Antonio Huerta,et al.  A superconvergent hybridisable discontinuous Galerkin method for linear elasticity , 2018, International Journal for Numerical Methods in Engineering.

[5]  Hrvoje Jasak,et al.  Application of the finite volume method and unstructured meshes to linear elasticity , 2000 .

[6]  M. A. Wheel A finite-volume approach to the stress analysis of pressurized axisymmetric structures , 1996 .

[7]  Arnaud G. Malan,et al.  An enhanced finite volume method to model 2D linear elastic structures , 2014 .

[8]  Antonio J. Gil,et al.  Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics , 2013 .

[9]  Mamoru Inouye,et al.  Time-Split Finite-Volume Method for Three-Dimensional Blunt-Body Flow , 1973 .

[10]  Antonio Huerta,et al.  A face‐centred finite volume method for second‐order elliptic problems , 2017, ArXiv.

[11]  Wenke Pan,et al.  Six-node triangle finite volume method for solids with a rotational degree of freedom for incompressible material , 2008 .

[12]  Boris Diskin,et al.  Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations , 2013 .

[13]  I. Bijelonja,et al.  A finite volume method for incompressible linear elasticity , 2006 .

[14]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[15]  M. Wheel,et al.  A finite volume method for analysing the bending deformation of thick and thin plates , 1997 .

[16]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[17]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[18]  James L. Thomas,et al.  Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio , 2013 .

[19]  Alessandro Reali,et al.  An analysis of some mixed-enhanced finite element for plane linear elasticity , 2005 .

[20]  Jan M. Nordbotten Convergence of a Cell-Centered Finite Volume Discretization for Linear Elasticity , 2015, SIAM J. Numer. Anal..

[21]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[22]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .

[23]  Boris Diskin,et al.  Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes , 2012 .

[24]  Marcus Wheel,et al.  A finite volume method for solid mechanics incorporating rotational degrees of freedom , 2003 .

[25]  J. Fainberg,et al.  Finite volume multigrid solver for thermo-elastic stress analysis in anisotropic materials , 1996 .

[26]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[27]  P. Cardiff,et al.  A block-coupled Finite Volume methodology for linear elasticity and unstructured meshes , 2016 .

[28]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[29]  N. Fallah,et al.  A cell vertex and cell centred finite volume method for plate bending analysis , 2004 .

[30]  Bernardo Cockburn,et al.  A hybridizable discontinuous Galerkin method for linear elasticity , 2009 .

[31]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[32]  Yong Zhao,et al.  A 3D implicit unstructured-grid finite volume method for structural dynamics , 2007 .

[33]  B. D. Veubeke Stress function approach , 1975 .

[34]  Antonio Huerta,et al.  HDG-NEFEM with Degree Adaptivity for Stokes Flows , 2018, Journal of Scientific Computing.

[35]  Bernardo Cockburn,et al.  Analysis of an HDG method for linear elasticity , 2015 .

[36]  C. Bailey,et al.  Dynamic solid mechanics using finite volume methods , 2003 .

[37]  S. Muzaferija,et al.  Finite volume method for stress analysis in complex domains , 1994 .

[38]  Boris Diskin,et al.  Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Inviscid Fluxes , 2011 .

[39]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[40]  Antonio Huerta,et al.  Tutorial on Hybridizable Discontinuous Galerkin (HDG) for second-order elliptic problems , 2016 .

[41]  A. J. Gil,et al.  An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications , 2018, Computer Methods in Applied Mechanics and Engineering.

[42]  P. W. McDonald,et al.  The Computation of Transonic Flow Through Two-Dimensional Gas Turbine Cascades , 1971 .

[43]  M. Fortin,et al.  Reduced symmetry elements in linear elasticity , 2008 .

[44]  Chris Bailey,et al.  A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh , 1995 .

[45]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..