Biologically active secoiridoids: A comprehensive update

Secoiridoids are natural products of cyclopentane monoterpene derivatives that are formed by splitting the rings of cyclomethene oxime compounds at C-7 and C-8, and only account for a small part of cyclic ether terpenoids. Because of the chemically active hemiacetal structure in their common basic skeleton, secoiridoids have a wide range of biological activities, such as neuroprotective, anti-inflammatory, antidiabetic, hepatoprotective, and antinociceptive activities. Phenolic secoiridoids can also act against multiple molecular targets involved in human tumorigenesis, making them potentially valuable precursors for antitumor drug development. This review provides a detailed update, covering relevant discoveries from January 2011 to December 2020, about the occurrence, structural diversity, bioactivities, and synthesis of naturally occurring secoiridoids. We aimed to resolve the lack of extensive, specific, and thorough review of secoiridoids, as well as open new areas for pharmacological investigation and better drugs based on these compounds.

[1]  Jie‐Kun Xu,et al.  Cornuside ameliorates cognitive impairments in scopolamine induced AD mice: Involvement of neurotransmitter and oxidative stress. , 2022, Journal of ethnopharmacology.

[2]  Jie‐Kun Xu,et al.  Chemical constituents and their antioxidant and anti-inflammatory activities from edible Cornus officinalis fruits , 2022, European Food Research and Technology.

[3]  Jie‐Kun Xu,et al.  Secoiridoid dimers and their biogenetic precursors from the fruits of Cornus officinalis with potential therapeutic effects on type 2 diabetes. , 2021, Bioorganic chemistry.

[4]  Hongping Zhao,et al.  Iridoid compounds from the aerial parts of Swertia mussotii Franch. with cytotoxic activity , 2019, Natural product research.

[5]  H. Roche,et al.  Regulating metabolic inflammation by nutritional modulation. , 2020, The Journal of allergy and clinical immunology.

[6]  Z. Hassan,et al.  The intrinsic and extrinsic elements regulating inflammation. , 2020, Life sciences.

[7]  K. Sawanyawisuth,et al.  A new secoiridoid glycoside and other constituents from the roots and flowers of Fagraea fragrans Roxb. (Gentianaceae) , 2020, Natural product research.

[8]  Wei Zhou,et al.  Chemical constituents from Syringa reticulata (Bl.) Hara , 2020 .

[9]  Gongye Zhang,et al.  Protective effects of iridoid glycosides on acute colitis via inhibition of the inflammatory response mediated by the STAT3/NF-кB pathway. , 2020, International immunopharmacology.

[10]  M. Sánchez-Hidalgo,et al.  Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases , 2020, Antioxidants.

[11]  Z. Zou,et al.  The novel indole glucoalkaloid and secoiridoid glucoside from Tripterospermum chinense , 2020 .

[12]  Huan Liu,et al.  Seven new chemical constituents from the roots of Gentiana macrophylla pall. , 2020, Fitoterapia.

[13]  Jie‐Kun Xu,et al.  Undescribed morroniside-like secoiridoid diglycosides with α-glucosidase inhibitory activity from Corni Fructus. , 2020, Phytochemistry.

[14]  Jing Xuan,et al.  Three new secoiridoid glycosides from the flower buds of Lonicera japonica. , 2020, Chinese journal of natural medicines.

[15]  D. Harakat,et al.  New Oleanane-type glycosides and secoiridoid glucoside from Aptandra zenkeri , 2020, Natural product research.

[16]  R. Grée,et al.  Selective modification of oleuropein, a multifunctional bioactive natural product , 2019, Journal of Saudi Chemical Society.

[17]  Yan Yang,et al.  Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy (original article). , 2019, Pharmacological research.

[18]  Jie‐Kun Xu,et al.  Cornusglucosides A and B, Two New Iridoid Glucosides from the Fruit of Cornus officinalis , 2019, Chemistry & biodiversity.

[19]  Wei Zhou,et al.  A New Secoiridoid from the Stem Bark of Syringa reticulata , 2019, Chemistry of Natural Compounds.

[20]  M. Gromiha,et al.  Amarogentin, a secoiridoid glycoside, activates AMP- activated protein kinase (AMPK) to exert beneficial vasculo-metabolic effects. , 2019, Biochimica et biophysica acta. General subjects.

[21]  H. Ishikawa,et al.  Total Syntheses of (-)-Secologanin, (-)-5-Carboxystrictosidine, and (-)-Rubenine. , 2019, Chemistry.

[22]  Yanru Deng,et al.  The Oleaceae family: A source of secoiridoids with multiple biological activities. , 2019, Fitoterapia.

[23]  Erwei Hao,et al.  Chemical constituents from Jasminum pentaneurum Hand.-Mazz and their cytotoxicity against human cancer cell lines , 2019, Natural product research.

[24]  K. Alipieva,et al.  Isofraxisecoside, a new coumarin-secoiridoid from the stem bark of Fraxinus xanthoxyloides , 2019, Natural product research.

[25]  D. Russo,et al.  Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: A critical analysis of experimental studies , 2019, Pharmacological research.

[26]  Zhenzhong Wang,et al.  A new dimeric secoiridoids derivative, japonicaside E, from the flower buds of Lonicera japonica , 2019, Natural product research.

[27]  M. Alivand,et al.  Oleuropein inhibits migration ability through suppression of epithelial‐mesenchymal transition and synergistically enhances doxorubicin‐mediated apoptosis in MCF‐7 cells , 2018, Journal of cellular physiology.

[28]  F. Bianchini,et al.  Oleuropein, the Main Polyphenol of Olea europaea Leaf Extract, Has an Anti-Cancer Effect on Human BRAF Melanoma Cells and Potentiates the Cytotoxicity of Current Chemotherapies , 2018, Nutrients.

[29]  Wei Zhou,et al.  Isolation of a new natural kingiside aglucone derivative and other anti-inflammatory constituents from Syringa reticulata , 2018, Natural product research.

[30]  D. Mišić,et al.  Organ-specific and genotype-dependent constitutive biosynthesis of secoiridoid glucosides in Centaurium erythraea Rafn, and its elicitation with methyl jasmonate. , 2018, Phytochemistry.

[31]  R. Tyagi,et al.  The Molecular Targets of Swertiamarin and its Derivatives Confer Anti- Diabetic and Anti-Hyperlipidemic Effects. , 2018, Current drug targets.

[32]  M. Neurath,et al.  Resolution of chronic inflammatory disease: universal and tissue-specific concepts , 2018, Nature Communications.

[33]  Jiayi Bi,et al.  Two new secoiridoid glucosides and a new lignan from the roots of Ilex pubescens , 2018, Journal of Natural Medicines.

[34]  D. Ojcius,et al.  Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis , 2018, Gut.

[35]  Wen-Yun Gao,et al.  Geniposide and Gentiopicroside Suppress Hepatic Gluconeogenesis via Regulation of AKT-FOXO1 Pathway. , 2018, Archives of medical research.

[36]  Jih-Jung Chen,et al.  Secoiridoid Glycosides from the Roots of Picrorhiza scrophulariiflora , 2018, Chemistry of Natural Compounds.

[37]  F. Hu,et al.  Olive oil and prevention of chronic diseases: Summary of an International conference. , 2018, Nutrition, metabolism, and cardiovascular diseases : NMCD.

[38]  M. Nadeem,et al.  Antitumor Perspectives of Oleuropein and Its Metabolite Hydroxytyrosol: Recent Updates. , 2018, Journal of food science.

[39]  Chi-I Chang,et al.  Secoiridoids from the Seed of Gonocaryum calleryanum and Their Inhibitory Potential on LPS-Induced Tumor Necrosis Factor and Nitric Oxide Production , 2018, Molecules.

[40]  K. Dai,et al.  Hepatoprotective activity of iridoids, seco-iridoids and analog glycosides from Gentianaceae on HepG2 cells via CYP3A4 induction and mitochondrial pathway. , 2018, Food & function.

[41]  Yi Zhang,et al.  Secoiridoid analogues from the fruits of Ligustrum lucidum and their inhibitory activities against influenza A virus. , 2018, Bioorganic & medicinal chemistry letters.

[42]  M. Woodward,et al.  Metabolically Healthy Obesity, Transition to Metabolic Syndrome, and Cardiovascular Risk. , 2018, Journal of the American College of Cardiology.

[43]  X. Yao,et al.  New secoiridoids from the fruits of Ligustrum lucidum , 2018, Journal of Asian natural products research.

[44]  Han-Dong Sun,et al.  Rigenolides D–H, norsecoiridoid and secoiridoids from Gentiana rigescens Franch , 2018, Journal of Natural Medicines.

[45]  Fei Wang,et al.  Hispanane‐Type Diterpenoid and Secoiridoid Glucosides from Viburnum cylindricum , 2018, Chemistry & biodiversity.

[46]  U. Gašić,et al.  In vitro and in vivo transformations of Centaurium erythraea secoiridoid glucosides alternate their antioxidant and antimicrobial capacity , 2018 .

[47]  S. Kim,et al.  Secoiridoid Glycosides from the Twigs of Ligustrum obtusifolium Possess Anti-inflammatory and Neuroprotective Effects. , 2018, Chemical & pharmaceutical bulletin.

[48]  Afsar Khan,et al.  Sweritranslactones A-C: Unusual Skeleton Secoiridoid Dimers via [4 + 2] Cycloaddition from Swertiamarin. , 2017, The Journal of organic chemistry.

[49]  Jie‐Kun Xu,et al.  Cornusides A-O, Bioactive Iridoid Glucoside Dimers from the Fruit of Cornus officinalis. , 2017, Journal of natural products.

[50]  O. Tsitsilonis,et al.  New semi-synthetic analogs of oleuropein show improved anticancer activity in vitro and in vivo. , 2017, European journal of medicinal chemistry.

[51]  S. Granica,et al.  Hydroxycinnamoyl derivatives and secoiridoid glycoside derivatives from Syringa vulgaris flowers and their effects on the pro-inflammatory responses of human neutrophils. , 2017, Fitoterapia.

[52]  Jeong Ah Kim,et al.  Chemical constituents from the fruits of Ligustrum japonicum and their inhibitory effects on T cell activation. , 2017, Phytochemistry.

[53]  Xiaoxuan Tian,et al.  Cloning and Characterization of Two Iridoid Synthase Homologs from Swertia Mussotii , 2017, Molecules.

[54]  E. Tsiani,et al.  Anticancer effects of oleuropein , 2017, BioFactors.

[55]  Jie‐Kun Xu,et al.  Four new iridoid glucosides containing the furan ring from the fruit of Cornus officinalis. , 2017, Fitoterapia.

[56]  F. Wang,et al.  Protective Effects of Amarogentin against Carbon Tetrachloride-Induced Liver Fibrosis in Mice , 2017, Molecules.

[57]  Shaoping Wu,et al.  Design, synthesis and biological evaluation of gentiopicroside derivatives as potential antiviral inhibitors. , 2017, European journal of medicinal chemistry.

[58]  Han-Dong Sun,et al.  Rigenolides B and C, conjugates of norsecoiridoid and secoiridoid glucoside from Gentiana rigescens Franch. , 2017 .

[59]  Nian Gong,et al.  Morroniside, a secoiridoid glycoside from Cornus officinalis, attenuates neuropathic pain by activation of spinal glucagon‐like peptide‐1 receptors , 2017, British journal of pharmacology.

[60]  Kyoung Jin Park,et al.  Secoiridoid Glucosides from the Twigs of Syringa oblata var. dilatata and Their Neuroprotective and Cytotoxic Activities. , 2017, Chemical & pharmaceutical bulletin.

[61]  H. Cho,et al.  Dietary oleuropein inhibits tumor angiogenesis and lymphangiogenesis in the B16F10 melanoma allograft model: a mechanism for the suppression of high-fat diet-induced solid tumor growth and lymph node metastasis , 2017, Oncotarget.

[62]  C. Long,et al.  Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the Tibetan medicinal plant Swertia mussotii , 2017, Scientific Reports.

[63]  T. Wadden,et al.  Mechanisms, Pathophysiology, and Management of Obesity , 2017, The New England journal of medicine.

[64]  Lun Li,et al.  The anti-hyperplasia, anti-oxidative and anti-inflammatory properties of Qing Ye Dan and swertiamarin in testosterone-induced benign prostatic hyperplasia in rats. , 2017, Toxicology letters.

[65]  Manisha Pandey,et al.  A systematic review of the protective role of swertiamarin in cardiac and metabolic diseases. , 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[66]  Chang-An Geng,et al.  A Fragmentation Study on Four Unusual Secoiridoid Trimers, Swerilactones H–K, by Electrospray Tandem Mass Spectrometry , 2016, Natural Products and Bioprospecting.

[67]  A. Bishayee,et al.  Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. , 2016, Seminars in cancer biology.

[68]  Yan Jiao,et al.  Protective effect of gentiopicroside against dextran sodium sulfate induced colitis in mice. , 2016, International immunopharmacology.

[69]  Hideyuki Suzuki,et al.  De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways , 2016, Journal of Natural Medicines.

[70]  Hai Zhang,et al.  A new secoiridoid glycoside and a new sesquiterpenoid glycoside from Valeriana jatamansi with neuroprotective activity , 2016 .

[71]  Zheng-Tao Wang,et al.  Sweroside ameliorates α-naphthylisothiocyanate-induced cholestatic liver injury in mice by regulating bile acids and suppressing pro-inflammatory responses , 2016, Acta Pharmacologica Sinica.

[72]  Juei-Tang Cheng,et al.  Amarogentin ameliorates diabetic disorders in animal models , 2016, Naunyn-Schmiedeberg's Archives of Pharmacology.

[73]  Shoude Zhang,et al.  A concise asymmetric total synthesis for structure elucidation of 5,6-secoiridoid from Incarvillea argute , 2016 .

[74]  Hideyuki Suzuki,et al.  High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites , 2016, Plant Cell Reports.

[75]  O. Potterat,et al.  New Secoiridoid Glucoside, and a Metabolite Profile of Scabiosa lucida. , 2016, Natural product communications.

[76]  Ji-Yeon Park,et al.  A new secoiridoid glycoside from the fruits of Cornus officinalis (Cornaceae) , 2016, Natural product research.

[77]  Junliang Sun,et al.  Two New Secoiridoid Glucosides from the Twigs of Cornus officinalis , 2016, Chemistry of Natural Compounds.

[78]  Shaojiang Song,et al.  Secoiridoids and lignans from the leaves of Diospyros kaki Thunb. with antioxidant and neuroprotective activities , 2016 .

[79]  H. Mizuguchi,et al.  Modeling of drug-mediated CYP3A4 induction by using human iPS cell-derived enterocyte-like cells. , 2016, Biochemical and biophysical research communications.

[80]  Ning Liu,et al.  Antinociceptive effects of gentiopicroside on neuropathic pain induced by chronic constriction injury in mice: a behavioral and electrophysiological study. , 2016, Canadian journal of physiology and pharmacology.

[81]  M. Recio,et al.  Chemopreventive effect of oleuropein in colitis-associated colorectal cancer in c57bl/6 mice. , 2016, Molecular nutrition & food research.

[82]  Chang-An Geng,et al.  Two new secoiridoids and other anti-hepatitis B virus active constituents from Swertia patens , 2016, Journal of Asian natural products research.

[83]  A. Osbourn,et al.  Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits* , 2015, The Journal of Biological Chemistry.

[84]  Shaoping Wu,et al.  Studies towards the synthesis of secoiridoids , 2015 .

[85]  H. Casabianca,et al.  Biological activities of the natural antioxidant oleuropein: Exceeding the expectation – A mini-review , 2015 .

[86]  Xiaopeng Hu,et al.  Phenylethanoid and secoiridoid glycosides from the leaves of Ligustrum purpurascens , 2015 .

[87]  Lin Sun,et al.  One New Conjugate of a Secoiridoid Glucoside with a Sesquiterpene Glucoside from the Flower Buds of Lonicera japonica , 2015, Natural product communications.

[88]  Qianying Chen,et al.  Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-κb pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice , 2015, Scientific Reports.

[89]  J. Hwang,et al.  Modulation effects of sweroside isolated from the Lonicera japonica on melanin synthesis. , 2015, Chemico-biological interactions.

[90]  R. Chauhan,et al.  Contents of therapeutic metabolites in Swertia chirayita correlate with the expression profiles of multiple genes in corresponding biosynthesis pathways. , 2015, Phytochemistry.

[91]  F. Takano,et al.  New secoiridoid ester of swertiamarin and secoxyloganic acid with hepatoprotective activity from Centaurium spicatum L. , 2015 .

[92]  M. Ruan,et al.  Attenuation of stress-induced gastrointestinal motility disorder by gentiopicroside, from Gentiana macrophylla Pall. , 2015, Fitoterapia.

[93]  Muhammad Ali Hashmi,et al.  A New Dimeric Secoiridoid Glycoside from the Leaves of Olea ferruginea Royle , 2015 .

[94]  C. Kim,et al.  A new phenolic glycoside from Spiraea prunifolia var. simpliciflora twigs , 2015, Archives of pharmacal research.

[95]  Chang-An Geng,et al.  Sweriyunnanlactone A, one unusual secoiridoid trimer from Swertia yunnanensis , 2015 .

[96]  Shu Zhu,et al.  Secoiridoid glycosides from the root of Gentiana crassicaulis with inhibitory effects against LPS-induced NO and IL-6 production in RAW264 macrophages , 2015, Journal of Natural Medicines.

[97]  Jia-qing Cao,et al.  Osmanthus fragrans seeds, a source of secoiridoid glucosides and its antioxidizing and novel platelet-aggregation inhibiting function , 2015 .

[98]  Chang-An Geng,et al.  Five new secoiridoid glycosides and one unusual lactonic enol ketone with anti-HBV activity from Swertia cincta. , 2015, Fitoterapia.

[99]  G. Dhanavathy Immunohistochemistry, histopathology, and biomarker studies of swertiamarin, a secoiridoid glycoside, prevents and protects streptozotocin-induced β-cell damage in Wistar rat pancreas , 2015, Journal of Endocrinological Investigation.

[100]  H. Jaeschke,et al.  Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. , 2015, Toxicology and applied pharmacology.

[101]  K. Zou,et al.  The anti-inflammatory secoiridoid glycosides from Gentianae Scabrae Radix: the root and rhizome of Gentiana scabra , 2015, Journal of Natural Medicines.

[102]  K. Kawazoe,et al.  Algiolide A, secoiridoid glucoside from Mongolian medicinal plant Gentiana algida , 2015 .

[103]  Muhammad Ali Hashmi,et al.  A new secoiridoid glycosidic lignan ester from the leaves of Olea ferruginea , 2015, Magnetic resonance in chemistry : MRC.

[104]  W. Kreis,et al.  Iridoid synthase activity is common among the plant progesterone 5β-reductase family. , 2014, Molecular plant.

[105]  Chun Li,et al.  A Rare Secoiridoid Dimer Derivative from Ligustri lucidi fructus , 2015 .

[106]  D. Martín-Vertedor,et al.  Phenolic compounds and antioxidant capacity of virgin olive oil. , 2014, Food chemistry.

[107]  Shu-wei Zhang,et al.  Anti-inflammatory secoiridoid glycosides from Gentianella azurea. , 2014, Bioorganic & medicinal chemistry letters.

[108]  E. Kennelly,et al.  Antioxidant and anti-inflammatory caffeoyl phenylpropanoid and secoiridoid glycosides from Jasminum nervosum stems, a Chinese folk medicine. , 2014, Phytochemistry.

[109]  Yong-chun Yang,et al.  Two new β-hydroxy amino acid-coupled secoiridoids from the flower buds of Lonicera japonica: Isolation, structure elucidation, semisynthesis, and biological activities , 2014 .

[110]  Wei Zhao,et al.  Antioxidant and anti-inflammatory active dihydrobenzofuran neolignans from the seeds of Prunus tomentosa. , 2014, Journal of agricultural and food chemistry.

[111]  H. Tamura,et al.  Secoiridoid type of antiallergic substances in olive waste materials of three Japanese varieties of Olea europaea. , 2014, Journal of agricultural and food chemistry.

[112]  Hui Chen,et al.  Hepatoprotective coumarins and secoiridoids from Hydrangea paniculata. , 2014, Fitoterapia.

[113]  G. Chou,et al.  Two New Iridoids from Verbena officinalis L. , 2014, Molecules.

[114]  V. De Luca,et al.  Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. , 2014, Current opinion in plant biology.

[115]  Linghuo Jiang,et al.  The hepatoprotective effect and chemical constituents of total iridoids and xanthones extracted from Swertia mussotii Franch. , 2014, Journal of ethnopharmacology.

[116]  Yong‐Xian Cheng,et al.  Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. , 2014, Journal of ethnopharmacology.

[117]  R. Fabiani,et al.  Oleuropein inhibits tumour growth and metastases dissemination in ovariectomised nude mice with MCF-7 human breast tumour xenografts , 2014 .

[118]  L. Lien,et al.  Amarogentin, a Secoiridoid Glycoside, Abrogates Platelet Activation through PLCγ2-PKC and MAPK Pathways , 2014, BioMed research international.

[119]  H. Bouwmeester,et al.  The seco-iridoid pathway from Catharanthus roseus , 2014, Nature Communications.

[120]  Zhe-zhi Wang,et al.  An insight into the genes involved in secoiridoid biosynthesis in Gentiana macrophylla by RNA-seq , 2014, Molecular Biology Reports.

[121]  T. Kokubun,et al.  Unexpected secoiridoid glucosides from Manulea corymbosa. , 2014, Journal of natural products.

[122]  O. Werz,et al.  One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor. , 2014, Journal of natural products.

[123]  Gan-peng Li,et al.  A New Secoiridoid Glycoside from Swertia cincta , 2014 .

[124]  Chang-An Geng,et al.  LC-MS guided isolation of (±)-sweriledugenin A, a pair of enantiomeric lactones, from Swertia leducii. , 2014, Organic letters.

[125]  L. Rui,et al.  Energy metabolism in the liver. , 2014, Comprehensive Physiology.

[126]  Y. Kashiwada,et al.  Conjugates of a secoiridoid glucoside with a phenolic glucoside from the flower buds of Lonicera japonica Thunb. , 2013, Phytochemistry.

[127]  Han-Dong Sun,et al.  Rigenolide A, a new secoiridoid glucoside with a cyclobutane skeleton, and three new acylated secoiridoid glucosides from Gentiana rigescens Franch. , 2013, Fitoterapia.

[128]  Yi Zhang,et al.  New secoiridoids from the fruits of Ligustrum lucidum Ait with triglyceride accumulation inhibitory effects. , 2013, Fitoterapia.

[129]  S. Koo,et al.  CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis , 2013, BMB reports.

[130]  Chen-chen Zhu,et al.  Homosecoiridoid alkaloids with amino acid units from the flower buds of Lonicera japonica. , 2013, Journal of natural products.

[131]  B. Copple,et al.  IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. , 2013, The American journal of pathology.

[132]  Chang-An Geng,et al.  Minor secoiridoid aglycones from the low-polarity part of the traditional Chinese herb: Swertia mileensis , 2013, Natural Products and Bioprospecting.

[133]  R. Goyal,et al.  Glycogen phosphorylase-a is a common target for anti-diabetic effect of iridoid and secoiridoid glycosides. , 2013, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[134]  Suming Chen,et al.  Quantification of bioactive gentiopicroside in the medicinal plant Gentiana scabra Bunge using near infrared spectroscopy , 2013 .

[135]  Chang-An Geng,et al.  Three new secoiridoids, swermacrolactones A-C and anti-hepatitis B virus activity from Swertia macrosperma. , 2013, Fitoterapia.

[136]  C. Hudis,et al.  Molecular Pathways: Adipose Inflammation as a Mediator of Obesity-Associated Cancer , 2013, Clinical Cancer Research.

[137]  Yao-lan Li,et al.  Oleonin, the first secoiridoid with 1α-configuration from Ligustrum lucidum , 2013 .

[138]  M. Stefani,et al.  The Polyphenol Oleuropein Aglycone Protects TgCRND8 Mice against Aß Plaque Pathology , 2013, PloS one.

[139]  Xu-ming Deng,et al.  A New Secoiridoid Glycoside from Roots of Picrorhiza scrophulariiflora , 2013 .

[140]  Yufeng Zhang,et al.  Isolation and Identification of Constituents with Activity of Inhibiting Nitric Oxide Production in Raw 264.7 Macrophages from Gentiana triflora , 2013, Planta Medica.

[141]  Denis Zofou,et al.  Anti-hyperglycaemic globulins from selected Cucurbitaceae seeds used as antidiabetic medicinal plants in Africa , 2013, BMC Complementary and Alternative Medicine.

[142]  H. Matsuda,et al.  Hydrangeamines A and B, novel polyketide-type pseudoalkaloid-coupled secoiridoid glycosides from the flowers of Hydrangea macrophylla var. thunbergii1 , 2013 .

[143]  J. Memelink,et al.  Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. , 2013, Phytochemistry.

[144]  Wen-ji Sun,et al.  In vitro inhibition and induction of human liver cytochrome P450 enzymes by gentiopicroside: potent effect on CYP2A6. , 2013, Drug metabolism and pharmacokinetics.

[145]  A. Wen,et al.  Comparison of the anti-inflammatory and analgesic effects of Gentiana macrophylla Pall. and Gentiana straminea Maxim., and identification of their active constituents. , 2012, Journal of ethnopharmacology.

[146]  J. Li,et al.  Two novel secoiridoid glucosides from Tripterospermum chinense , 2012, Journal of Asian natural products research.

[147]  Jiang Liu,et al.  New Secoiridoid Glycosides from the Buds of Lonicera macranthoides , 2012, Natural product communications.

[148]  Stephen L. Pinkosky,et al.  AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases , 2012, Journal of Lipid Research.

[149]  Vincent Courdavault,et al.  An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis , 2012, Nature.

[150]  Shuhui Song,et al.  Transcriptome Analysis Reveals Putative Genes Involved in Iridoid Biosynthesis in Rehmannia glutinosa , 2012, International journal of molecular sciences.

[151]  Gene-Hsiang Lee,et al.  Organocatalytic asymmetric anti-selective Michael reactions of aldehydes and the sequential reduction/lactonization/Pauson-Khand reaction for the enantioselective synthesis of highly functionalized hydropentalenes. , 2012, Organic letters.

[152]  M. Servili,et al.  Olive phenolic compounds: metabolic and transcriptional profiling during fruit development , 2012, BMC Plant Biology.

[153]  Zhi-min Wang,et al.  Secoiridoid Sulfonates from the Sulfiting‐Processed Buds of Lonicera japonica , 2012 .

[154]  G. Chou,et al.  New Iridoid and Secoiridoid Glucosides from the Roots of Gentiana manshurica , 2012 .

[155]  V. Cardile,et al.  Antiproliferative effect of oleuropein in prostate cell lines. , 2012, International journal of oncology.

[156]  J. Degenhardt,et al.  Isolation and characterization of terpene synthases potentially involved in flavor development of ripening olive (Olea europaea) fruits. , 2012, Journal of plant physiology.

[157]  Chang-An Geng,et al.  Seven new secoiridoids with anti-hepatitis B virus activity from Swertia angustifolia. , 2012, Planta medica.

[158]  M. Kikuchi,et al.  Six new secoiridoids from the dried fruits of Ligustrum lucidum. , 2012, Chemical & pharmaceutical bulletin.

[159]  A. Alexakis,et al.  Enantioselective copper-catalyzed conjugate addition of trimethylaluminium to β,γ-unsaturated α-ketoesters. , 2012, Angewandte Chemie.

[160]  B. Hamdi,et al.  New secoiridoid from olive mill wastewater , 2012, Natural product research.

[161]  Yuan Zhang,et al.  AMP-Activated Protein Kinase Suppresses Endothelial Cell Inflammation Through Phosphorylation of Transcriptional Coactivator p300 , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[162]  Wei Li,et al.  Secoiridoid glucosides and related compounds from Syringa reticulata and their antioxidant activities. , 2011, Bioorganic & medicinal chemistry letters.

[163]  Yang Yu,et al.  Homosecoiridoids from the flower buds of Lonicera japonica. , 2011, Journal of natural products.

[164]  Y. Kimura,et al.  Effects of Swertia japonica extract and its main compound swertiamarin on gastric emptying and gastrointestinal motility in mice. , 2011, Fitoterapia.

[165]  K. Ingkaninan,et al.  Bisindole alkaloids and secoiridoids from Alstonia macrophylla Wall. ex G. Don. , 2011, Fitoterapia.

[166]  Chang-An Geng,et al.  Anti-hepatitis B virus active secoiridoids from Swertia kouitchensis , 2011, Natural Products and Bioprospecting.

[167]  A. Malik,et al.  Enicostemins A and B, New Secoiridoids from Enicostemma verticillatum , 2011 .

[168]  R. Banik,et al.  Naturally occurring iridoids and secoiridoids. An updated review, part 4. , 2011, Chemical & pharmaceutical bulletin.

[169]  Ya-Ping Liu,et al.  A new type of monoterpenoid indole alkaloid precursor from Alstonia rostrata. , 2011, Organic letters.

[170]  Sindhu Akkati,et al.  Eemergence of Promising Therapies in Diabetes Mellitus , 2011, Journal of clinical pharmacology.

[171]  P. Villoslada,et al.  Targeting NGF pathway for developing neuroprotective therapies for multiple sclerosis and other neurological diseases. , 2011, Archives italiennes de biologie.

[172]  G. Lippens,et al.  Oleuropein and derivatives from olives as Tau aggregation inhibitors , 2011, Neurochemistry International.

[173]  Chang-An Geng,et al.  Anti-hepatitis B virus active lactones from the traditional Chinese herb: Swertia mileensis. , 2011, Chemistry.

[174]  F. Pilleul,et al.  Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas. , 2011, Journal of hepatology.

[175]  R. Furlan,et al.  Chemically engineered extracts: source of bioactive compounds. , 2011, Accounts of chemical research.

[176]  T. A. Beek,et al.  Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC–DAD–radical scavenging detection , 2011 .

[177]  H. Jaeschke,et al.  Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. , 2011, The American journal of pathology.

[178]  M. Kikuchi,et al.  New physiological function of secoiridoids: neuritogenic activity in PC12h cells , 2011, Journal of Natural Medicines.

[179]  W. Ye,et al.  Two new dimeric secoiridoid glycosides from the fruits of Ligustrum lucidum , 2010, Journal of Asian natural products research.

[180]  Tao Chen,et al.  Iridoids and lignans from Valeriana jatamansi. , 2010, Journal of natural products.

[181]  J. Hofferberth,et al.  A divergent approach to the diastereoselective synthesis of several ant-associated iridoids. , 2010, Organic letters.

[182]  O. Wiest,et al.  Mild and efficient desymmetrization of diynes via hydroamination: application to the synthesis of (+/-)-monomorine I. , 2010, The Journal of organic chemistry.

[183]  M. Behrens,et al.  The human bitter taste receptor hTAS2R50 is activated by the two natural bitter terpenoids andrographolide and amarogentin. , 2009, Journal of agricultural and food chemistry.

[184]  D. Chowdhury,et al.  Naturally occurring iridoids, secoiridoids and their bioactivity. An updated review, part 3. , 2009, Chemical & pharmaceutical bulletin.

[185]  D. Newman,et al.  Impact of natural products on developing new anti-cancer agents. , 2009, Chemical reviews.

[186]  D. Curran,et al.  Synthesis and applications of a light-fluorous glycosyl donor. , 2009, The Journal of organic chemistry.

[187]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[188]  Alan L Harvey,et al.  Natural products in drug discovery. , 2008, Drug discovery today.

[189]  Xu-ming Deng,et al.  Three New Caffeoyl Glycosides from the Roots of Picrorhiza Scrophulariiflora , 2008, Molecules.

[190]  Sheng Lin,et al.  Pyridinium alkaloid-coupled secoiridoids from the flower buds of Lonicera japonica. , 2008, Journal of natural products.

[191]  Shu-wei Zhang,et al.  Water-soluble constituents of the root barks of Fraxinus rhynchophylla (Chinese drug Qinpi) , 2008, Journal of Asian natural products research.

[192]  Matthew G. Beaver,et al.  C-glycosylation reactions of sulfur-substituted glycosyl donors: evidence against the role of neighboring-group participation. , 2008, Journal of the American Chemical Society.

[193]  Y. Harigaya,et al.  Naturally occurring secoiridoids and bioactivity of naturally occurring iridoids and secoiridoids. A review, part 2. , 2007, Chemical & pharmaceutical bulletin.

[194]  Y. Harigaya,et al.  Naturally occurring iridoids. A review, part 1. , 2007, Chemical & pharmaceutical bulletin.

[195]  Luan Xin-hui Chemical Constituents of Verbena officinalis L.(II) , 2007 .

[196]  M. Clastre,et al.  The iridoid pathway in Catharanthus roseus alkaloid biosynthesis , 2007, Phytochemistry Reviews.

[197]  T. Gilmore Introduction to NF-κB: players, pathways, perspectives , 2006, Oncogene.

[198]  J. Nuzillard,et al.  The structural elucidation of a novel iridoid derivative from Tachiadenus longiflorus (Gentianaceae) using the LSD programme and quantum chemical computations. , 2006, Phytochemical analysis : PCA.

[199]  Y. Di,et al.  Secoiridoid glycosides from Swertia mileensis , 2006 .

[200]  T. Gödecke,et al.  A Phenol Glucoside, Uncommon Coumarins and Flavonoids from Pelargonium sidoides DC , 2005 .

[201]  M. Finn,et al.  Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. , 2005, Angewandte Chemie.

[202]  I. Mangion,et al.  Total synthesis of brasoside and littoralisone. , 2005, Journal of the American Chemical Society.

[203]  J. Trujillo,et al.  Iridoids and secoiridoids from Oleaceae , 2005 .

[204]  Yue Sun,et al.  Identification of β-Arrestin2 as a G Protein-Coupled Receptor-Stimulated Regulator of NF-κB Pathways , 2004 .

[205]  D. Ferreira,et al.  Circular dichroic properties of flavan-3,4-diols. , 2004, Journal of natural products.

[206]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[207]  H. Takayama,et al.  First asymmetric total synthesis of Us-7 and -8, novel D-seco Corynanthe-type oxindole alkaloids from Uncaria attenuata: structure revision of Us-7 and determination of absolute stereochemistry. , 2003, Organic letters.

[208]  N. Baba,et al.  Feeding Stimulative Activity of Steroidal and Secoiridoid Glucosides and Their Hydrolysed Derivatives toward the Olive Weevil (Dyscerus perforatus) , 2003, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[209]  M. Hattori,et al.  Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. , 2003, Chemical & pharmaceutical bulletin.

[210]  P. Prenzler,et al.  Identification of phenolic compounds in tissues of the novel olive cultivar hardy's mammoth. , 2002, Journal of agricultural and food chemistry.

[211]  B. Vogler,et al.  Escuside, a new coumarin-secoiridoid from Fraxinus ornus bark. , 2002, Fitoterapia.

[212]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[213]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[214]  V. Ooi,et al.  In vitro evaluation of secoiridoid glucosides from the fruits of Ligustrum lucidum as antiviral agents. , 2001, Chemical & pharmaceutical bulletin.

[215]  W. Eisenreich,et al.  Unexpected Biosynthetic Precursors of Amarogentin − A Retrobiosynthetic 13C NMR Study , 2001 .

[216]  W. Ye,et al.  Secoiridoid constituents from the fruits of Ligustrum lucidum. , 2001, Phytochemistry.

[217]  P. Bermejo,et al.  In vitro anti-inflammatory activity of iridoids and triterpenoid compounds isolated from Phillyrea latifolia L. , 2000, Biological & pharmaceutical bulletin.

[218]  R. Chalkley,et al.  Phosphoenolpyruvate Carboxykinase Is Necessary for the Integration of Hepatic Energy Metabolism , 2000, Molecular and Cellular Biology.

[219]  L. van der Fits,et al.  ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. , 2000, Science.

[220]  M. Servili,et al.  Phenolic compounds of olive fruit: one- and two-dimensional nuclear magnetic resonance characterization of Nüzhenide and its distribution in the constitutive parts of fruit. , 1999, Journal of agricultural and food chemistry.

[221]  G. Gores,et al.  Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. , 1999, The Journal of clinical investigation.

[222]  R. Verpoorte,et al.  The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture , 1998, FEBS letters.

[223]  E. Ghisalberti,et al.  Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. , 1998, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[224]  K. Koike,et al.  Constituents of Bark of Fraxinus americana , 1997 .

[225]  C. Song,et al.  Synthesis of new C2-symmetric bioxazoles and application as chiral ligands in asymmetric hydrosilylation , 1997 .

[226]  Y. Zhong,et al.  Efficient and Facile Glycol Cleavage Oxidation Using Improved Silica Gel-Supported Sodium Metaperiodate. , 1997, The Journal of organic chemistry.

[227]  B. Foxman,et al.  SYNTEHSIS OF ()-ALLOCYATHIN B2 AND (+)-ERINACINE A , 1996 .

[228]  M. Ahmad,et al.  Enicostema littorale: a new source of swertiamarin. , 1996, Pakistan journal of pharmaceutical sciences.

[229]  T. Ohshima,et al.  Total syntheses of the lignans isolated from Schisandra Chinensis , 1995 .

[230]  Jong Chan Lee,et al.  Facile Synthesis of Alkyl Phenyl Ethers Using Cesium Carbonate , 1995 .

[231]  R. Kasai,et al.  Secoiridoid and flavonoid glycosides from Gonocaryum calleryanum , 1995 .

[232]  P. Fernyhough,et al.  Deficits in sciatic nerve neuropeptide content coincide with a reduction in target tissue nerve growth factor messenger RNA in streptozotocin-diabetic rats: Effects of insulin treatment , 1994, Neuroscience.

[233]  H. Franzyk,et al.  Biosynthesis of secoiridoid glucosides in oleaceae , 1993 .

[234]  T. Kutchan,et al.  Strictosidine: from alkaloid to enzyme to gene. , 1993, Phytochemistry.

[235]  S. Thompson,et al.  Total synthesis of some marasmane and lactarane sesquiterpenes , 1992 .

[236]  K. Hostettmann,et al.  Xanthones and secoiridoid glucosides of Halenia campanulata , 1992 .

[237]  F. Stermitz,et al.  IRIDOIDS. AN UPDATED REVIEW. II. , 1991 .

[238]  F. Stermitz,et al.  Iridoids. An updated review. Part I , 1990 .

[239]  A. R. Lal,et al.  Chemistry of Fijian plants. V. Constituents of Fagraea gracilipes A. Gray. , 1990 .

[240]  L. Tietze,et al.  Inter- and intramolecular hetero Diels-Alder reactions, 28. Synthesis of (±)-secologanin aglucone O-ethyl ether and derivatives by tandem Knoevenagel hetero Diels-Alder reaction , 1990 .

[241]  H. Kuwajima,et al.  Studies on monoterpene glucosides and related compounds. LXV. Biosynthesis of the biphenylcarboxylic acid moiety of amarogentin and amaroswerin. , 1990 .

[242]  R. Fletterick,et al.  The family of glycogen phosphorylases: structure and function. , 1989, Critical reviews in biochemistry and molecular biology.

[243]  H. Kuwajima,et al.  A secoiridoid glucoside from Olea europaea , 1988 .

[244]  I. Messana,et al.  Kingiside aglucone, a natural secoiridoid from unripe fruits of strychnos spinosa , 1985 .

[245]  Peter Marfey,et al.  Determination ofD-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene , 1984 .

[246]  J. Beal,et al.  Iridoids. A review. , 1980, Journal of natural products.

[247]  G. Snatzke Semiempirical rules in circular dichroism of natural products , 1979 .

[248]  K. Venkataraman,et al.  Cyanuric chloride : a useful reagent for converting carboxylic acids into chlorides, esters, amides and peptides , 1979 .

[249]  A. Lovey,et al.  Synthetic applications and mechanism studies of the decarbalkoxylations of geminal diesters and related systems effected in dimethyl sulfoxide by water and/or by water with added salts , 1978 .

[250]  R. T. Lalonde,et al.  Polygluosidic metabolites of Oleaceae. The chain sequence of oleoside aglucon, tyrosol, and glucose units in three metabolites from Fraxinus americana , 1976 .