Second-law design of a latent heat thermal energy storage with branched fins

Purpose – The purpose of this paper is to investigate efficient designs of a shell-and-tube latent thermal energy storage system through an approach based on the analysis of entropy generation. It proposes innovative branched fins to maximize the performance of the system. Design/methodology/approach – A computational fluid dynamic (CFD) model is first used to detail the thermo-fluid dynamic transient behavior of the latent heat storage system. The model account for phase change, buoyancy driven fluid flow and heat transfer during the process of energy retrieval from the storage unit (solidification). The CFD model is then used to evaluate locally the entropy generation rate during the process. On the basis of the insight gathered through the analysis of the entropy generation, the design of the fins is gradually modified aiming at the maximization of the performance of the storage system. Findings – The best fins design leads to a twofold increase of the solidification rate in the latent heat storage uni...

[1]  Zhenyu Liu,et al.  Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage , 2013 .

[2]  Adriano Sciacovelli,et al.  Melting of PCM in a thermal energy storage unit: Numerical investigation and effect of nanoparticle enhancement , 2013 .

[3]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[4]  K. Ismail,et al.  Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder , 2001 .

[5]  S. D. Pohekar,et al.  Performance enhancement in latent heat thermal storage system: A review , 2009 .

[6]  Adrian Bejan,et al.  Thermodynamic optimization of tree-shaped flow geometries , 2006 .

[7]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[8]  Elisa Guelpa,et al.  Entropy generation analysis for the design improvement of a latent heat storage system , 2013 .

[9]  A. Bejan Two Thermodynamic Optima in the Design of Sensible Heat Units for Energy Storage , 1978 .

[10]  S. D. Kim,et al.  Heat-transfer characteristics of a latent heat storage system using MgCl2 · 6H2O , 1992 .

[11]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[12]  S. Kalaiselvam,et al.  Sustainable thermal energy storage technologies for buildings: A review , 2012 .

[13]  Adriano Sciacovelli,et al.  Entropy generation analysis as a design tool - A review , 2015 .

[14]  Suresh V. Garimella,et al.  Experimental and numerical study of melting in a cylinder , 2006 .

[15]  Viktoria Martin,et al.  Submerged finned heat exchanger latent heat storage design and its experimental verification , 2012 .

[16]  K. Sopian,et al.  Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers , 2013 .

[17]  Nirmal-Kumar C. Nair,et al.  Impact of Energy Storage in Buildings on Electricity Demand Side Management , 2011, Thermal Energy Storage with Phase Change Materials.

[18]  M. Lacroix Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube , 1993 .

[19]  Jorge L. Alvarado,et al.  Latent thermal energy storage system using phase change material in corrugated enclosures , 2013 .

[20]  F. Marsík,et al.  Consistent theory of mixtures on different levels of description , 2014 .

[21]  Tarik Kousksou,et al.  Exergy based performance evaluation of latent heat thermal storage system: A review , 2010 .

[22]  David Jou,et al.  Understanding Non-equilibrium Thermodynamics , 2008 .

[23]  Vittorio Verda,et al.  Primary energy savings through thermal storage in district heating networks , 2011 .

[24]  Adrian Bejan,et al.  Design with constructal theory , 2008 .

[25]  F. Bruno,et al.  Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems , 2012 .

[26]  A. Bejan Entropy Generation Minimization , 2016 .

[27]  Miroslav Grmela,et al.  Time reversal in nonequilibrium thermodynamics. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .