Cockroaches Probably Cleaned Up after Dinosaurs

Dinosaurs undoubtedly produced huge quantities of excrements. But who cleaned up after them? Dung beetles and flies with rapid development were rare during most of the Mesozoic. Candidates for these duties are extinct cockroaches (Blattulidae), whose temporal range is associated with herbivorous dinosaurs. An opportunity to test this hypothesis arises from coprolites to some extent extruded from an immature cockroach preserved in the amber of Lebanon, studied using synchrotron X-ray microtomography. 1.06% of their volume is filled by particles of wood with smooth edges, in which size distribution directly supports their external pre-digestion. Because fungal pre-processing can be excluded based on the presence of large particles (combined with small total amount of wood) and absence of damages on wood, the likely source of wood are herbivore feces. Smaller particles were broken down biochemically in the cockroach hind gut, which indicates that the recent lignin-decomposing termite and cockroach endosymbionts might have been transferred to the cockroach gut upon feeding on dinosaur feces.

[1]  P. Vršanský Cretaceous Gondwanian Cockroaches (Insecta: Blattaria) , 2004 .

[2]  K. Lavoie,et al.  Chapter 12. The trophic basis of subsurface ecosystems , 2000 .

[3]  A. Nel,et al.  Termite coprolites (Insecta: Isoptera) from the Cretaceous of western France : A palaeoecological insight , 2011 .

[4]  D. Azar,et al.  First Mesozoic representative of the subfamily Liparochrinae (Coleoptera: Hybosoridae) from the Lowe , 2011 .

[5]  M. Christoffersen,et al.  A systematic monograph of the Recent Pentastomida, with a compilation of their hosts , 2013 .

[6]  K. Rogers Possible physiological and behavioral adaptations of herbivorous dinosaurs , 1985 .

[7]  T. Weitkamp,et al.  ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. , 2011, Journal of synchrotron radiation.

[8]  N. Annandale Zoological Results of a Tour in the Far East , 1916 .

[9]  C. T. Vorhies,et al.  The Grasshoppers and Other Orthoptera of Arizona , 1942 .

[10]  P. Vršanský Mass mutations of insects at the Jurassic/Cretaceous boundary? , 2005 .

[11]  Edward Osborne Wilson,et al.  Cockroaches: Ecology, Behavior, and Natural History , 2007 .

[12]  V. Ortuño,et al.  Did dinosaurs have any relation with dung‐beetles? (The origin of coprophagy) , 2008 .

[13]  Ulrich Bonse,et al.  X-ray computed microtomography (μCT) using synchrotron radiation (SR) , 1996 .

[14]  J. Riley,et al.  Experimental life-cycle studies of Raillietiella gehyrae Bovien, 1927 and Raillietiella frenatus Ali, Riley and Self, 1981: pentastomid parasites of geckos utilizing insects as intermediate hosts , 1983, Parasitology.

[15]  D. Ren,et al.  Variability of Habroblattula drepanoides gen. et. sp. nov. (Insecta: Blattaria: Blattulidae) from the Yixian Formation in Liaoning, China , 2007 .

[16]  Hebard,et al.  Records of Dermaptera and Orthoptera from west central and southwestern Florida, collected by William T. Davis , 1914 .

[17]  A. Richards An ecological study of the cavernicolous fauna of the Nullarbor Plain Southern Australia , 2009 .

[18]  D. Aristov Termites (Isoptera) from the Jurassic/Cretaceous boundary: Evidence for the longevity of their earliest genera , 2014 .

[19]  D. Chorvat,et al.  Light-mimicking cockroaches indicate Tertiary origin of recent terrestrial luminescence , 2012, Naturwissenschaften.

[20]  P. Béland,et al.  Paleoecology of Dinosaur Provincial Park (Cretaceous), Alberta, interpreted from the distribution of articulated vertebrate remains , 1978 .

[21]  K. Schoenly Arthropods Associated with Bovine and Equine Dung in an Ungrazed Chihuahuan Desert Ecosystem , 1983 .

[22]  L. Roth,et al.  A new genus and species of cave cockroach (Blaberidae: Oxyhaloinae) from Guinea, West Africa , 2004 .

[23]  A. Arillo Paleoethology: fossilized behaviours in amber , 2007 .

[24]  K. Chin THE PALEOBIOLOGICAL IMPLICATIONS OF HERBIVOROUS DINOSAUR COPROLITES FROM THE UPPER CRETACEOUS TWO MEDICINE FORMATION OF MONTANA: WHY EAT WOOD? , 2007 .

[25]  K. Kinnunen,et al.  Insect frass in Baltic amber , 2008 .

[26]  A. V. Gorokhov,et al.  History of Insects , 2002, Springer Netherlands.

[27]  T. C. Kane,et al.  Adaptation and Natural Selection in Caves: The Evolution of Gammarus minus , 1995 .

[28]  Paul A. Ferry,et al.  Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land , 2010, Biology Letters.

[29]  E. Buffetaut,et al.  First nonavian dinosaur from Lebanon: a brachiosaurid sauropod from the Lower Cretaceous of the Jezzine District , 2006, Naturwissenschaften.

[30]  C. Dover Fauna of the Batu Caves, Selangor , 1929 .

[31]  L. Roth,et al.  The Biotic Associations of Cockroaches , 2009 .

[32]  K. Tsuchimochi,et al.  Experi-mental Observations on the Dissemination of Disease by Cockroaches in Formosa. , 1926 .

[33]  F. Krell Fossil Record and Evolution of Scarabaeoidea (Coleoptera: Polyphaga) , 2009 .

[34]  L. Anisyutkin,et al.  A new genus and species of the cockroach family Blattulidae from Lebanese amber (Dictyoptera, Blattina) , 2008, Paleontological Journal.

[35]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[36]  G. Poinar Trace fossils in amber: A new dimension for the ichnologist , 1998 .

[37]  G. Bornemissza Could dung eating insects improve our pastures , 1960 .

[38]  V. Perrichot,et al.  Evidence for fungivory in Cretaceous amber forests from Gondwana and Laurasia , 2010 .

[39]  P. Vršanský Cockroach as the Earliest Eusocial Animal , 2010 .

[40]  M. Engel,et al.  New, primitive termites (Isoptera) from Early Cretaceous ambers of France and Lebanon , 2011 .

[41]  Andreas Kopmann,et al.  A GPU-based architecture for real-time data assessment at synchrotron experiments , 2010, 2010 17th IEEE-NPSS Real Time Conference.

[42]  J. Webster,et al.  Fungal Ecology , 1995, Springer Netherlands.

[43]  H. Tomassen,et al.  How bird droppings can affect the vegetation composition of ombrotrophic bogs , 2005 .

[44]  D. Slaney New species of Australian cockroaches in the genus Paratemnopteryx Saussure (Blattaria, Blattellidae, Blattellinae), and a discussion of some behavioural observations with respect to the evolution and ecology of cave life , 2001 .

[45]  F. E. Egler Ecosystems of the World , 1960 .

[46]  I. Hanski,et al.  Dung Beetle Ecology , 2014 .

[47]  W. J. Bell,et al.  Ecological Correlates of Paternal Investment of Urates in a Tropical Cockroach , 1982, Science.

[48]  P. Vršanský Mesozoic relative of the common synanthropic German cockroach (Blattodea) , 2008 .

[49]  P. Vršanský Albian cockroaches (Insecta, Blattida) from French amber of Archingeay , 2009 .

[50]  W. S. Blatchley The Orthoptera of Northeastern America , 1919 .

[51]  G. Ruxton,et al.  Could methane produced by sauropod dinosaurs have helped drive Mesozoic climate warmth? , 2012, Current Biology.

[52]  F. Hieke Halffter, Gonzalo, and Matthews, Eric G.: The Natural History of Dung Beetles of the Subfamily Scarabaeinae (Coleoptera, Scarabaeidae) – In: Folia Entomologica Mexicana México, D. F. (Soc. Mexicana de Entomologia), Nr. 12–14, 1966; 312 S., 52 Abb , 1969 .

[53]  K. Chin,et al.  Opportunistic exploitation of dinosaur dung: fossil snails in coprolites from the Upper Cretaceous Two Medicine Formation of Montana , 2009 .

[54]  L. Chopard La biologie des orthoptères , 1938 .

[55]  A. Sahni,et al.  Dinosaur Coprolites and the Early Evolution of Grasses and Grazers , 2005, Science.

[56]  N. Leleup La Faune cavernicole du Congo Belge et Considérations sur les Coléoptères reliques d’Afrique intertropicale , 1956 .

[57]  A. C. Chandler Some Factors Affecting the Propagation of Hookworm Infections in the Asansol Mining Settlement, with Special Reference to the Part Played by Cockroaches in Mines , 1926, The Indian medical gazette.

[58]  D. Ahrens,et al.  New fossil evidence of the early diversification of scarabs: Alloioscarabaeus cheni (Coleoptera: Scarabaeoidea) from the Middle Jurassic of Inner Mongolia, China , 2012 .

[59]  R. Hanitsch Fauna Sumatrensis (Beitrag No. 63). Blattidae , 1929 .

[60]  G. Halffter,et al.  The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae) , 1966 .

[61]  J. F. McBrayer Exploitation of deciduous leaf litter by Apheloria montana (Diplopoda: Eurydesrriidae) , 1973, Pedobiologia.

[62]  K. Chin,et al.  Dinosaurs, dung beetles, and conifers; participants in a Cretaceous food web , 1996 .

[63]  N. Annandale The Siamese Malay states , 1900 .

[64]  D. Ren,et al.  New Mesozoic cockroaches (Blattaria: Blattulidae) from Jehol Biota of western Liaoning in China , 2007 .

[65]  J. Leadbetter,et al.  Analysis of Extensive [FeFe] Hydrogenase Gene Diversity Within the Gut Microbiota of Insects Representing Five Families of Dictyoptera , 2011, Microbial Ecology.

[66]  Kumar Krishna,et al.  Additional Distributional Records of Ambystoma Laterale, A. Jeffersonianum (Amphibia: Caudata) and Their Unisexual Kleptogens in Northeastern North America , 2008 .

[67]  G. Poinar,et al.  Evidence of intestinal parasites of dinosaurs , 2006, Parasitology.

[68]  R. E. Johannes,et al.  COMPOSITION AND NUTRITIVE VALUE OF FECAL PELLETS OF A MARINE CRUSTACEAN1 , 1966 .

[69]  J. Macfie Observations on the Rôle of Cockroaches in Disease , 1922 .