Gradient-Based Automatic Lookup Table Generator for Radiative Transfer Models

Physically based radiative transfer models (RTMs) are widely used in Earth observation to understand the radiation processes occurring on the Earth’s surface and their interactions with water, vegetation, and atmosphere. Through continuous improvements, RTMs have increased in accuracy and representativity of complex scenes at expenses of an increase in complexity and computation time, making them impractical in various remote sensing applications. To overcome this limitation, the common practice is to precompute large lookup tables (LUTs) for their later interpolation. To further reduce the RTM computation burden and the error in LUT interpolation, we have developed a method to automatically select the minimum and optimal set of input–output points (nodes) to be included in an LUT. We present the gradient-based automatic LUT generator algorithm (GALGA), which relies on the notion of an acquisition function that incorporates: 1) the Jacobian evaluation of an RTM and 2) the information about the multivariate distribution of the current nodes. We illustrate the capabilities of GALGA in the automatic construction and optimization of MODTRAN-based LUTs of different dimensions of the input variables space. Our results indicate that when compared with a pseudorandom homogeneous distribution of the LUT nodes, GALGA reduces: 1) the LUT size by >24%; 2) the computation time by ~27%; and 3) the maximum interpolation relative errors by at least 10%. It is concluded that an automatic LUT design might benefit from the methodology proposed in GALGA to reduce interpolation errors and computation time in computationally expensive RTMs.

[1]  R. Tibshirani,et al.  The elements of statistical learning: data mining, inference, and prediction, 2nd Edition , 2020 .

[2]  Luis Alonso,et al.  Design of a Generic 3-D Scene Generator for Passive Optical Missions and Its Implementation for the ESA’s FLEX/Sentinel-3 Tandem Mission , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Alexander Berk,et al.  Validation of MODTRAN®6 and its line-by-line algorithm , 2017 .

[4]  Luis Alonso,et al.  Assessment of Approximations in Aerosol Optical Properties and Vertical Distribution into FLEX Atmospherically-Corrected Surface Reflectance and Retrieved Sun-Induced Fluorescence , 2017, Remote. Sens..

[5]  Jorge Vicent,et al.  Automatic emulator and optimized look-up table generation for radiative transfer models , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[6]  Luca Martino,et al.  Physics-Aware Gaussian Processes for Earth Observation , 2017, SCIA.

[7]  Jorge Vicent,et al.  Automatic Emulation by Adaptive Relevance Vector Machines , 2017, SCIA.

[8]  Jens Nieke,et al.  Results from the radiometric validation of Sentinel-3 optical sensors using natural targets , 2016, Optical Engineering + Applications.

[9]  Neus Sabater,et al.  Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis , 2016, Remote. Sens..

[10]  G. Camps-Valls,et al.  A Survey on Gaussian Processes for Earth-Observation Data Analysis: A Comprehensive Investigation , 2016, IEEE Geoscience and Remote Sensing Magazine.

[11]  Gustau Camps-Valls,et al.  Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval , 2016, IEEE Geoscience and Remote Sensing Letters.

[12]  Neus Sabater,et al.  FLEX End-to-End Mission Performance Simulator , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Xicheng Tan,et al.  PMODTRAN: a parallel implementation based on MODTRAN for massive remote sensing data processing , 2016, Int. J. Digit. Earth.

[14]  Jan G. P. W. Clevers,et al.  Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review , 2015 .

[15]  Dani Gamerman,et al.  Optimal Design in Geostatistics under Preferential Sampling , 2015, 1509.03410.

[16]  José F. Moreno,et al.  An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning , 2015, Remote. Sens..

[17]  Michael U. Gutmann,et al.  Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..

[18]  Lawrence S. Bernstein,et al.  Quick atmospheric correction code: algorithm description and recent upgrades , 2012 .

[19]  Wout Verhoef,et al.  Simulation of Sentinel-3 images by four-stream surface-atmosphere radiative transfer modeling in the optical and thermal domains , 2012 .

[20]  D. Tuia,et al.  Remote Sensing Image Processing , 2011, Synthesis Lectures on Image, Video, and Multimedia Processing.

[21]  W. Verhoef,et al.  An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance , 2009 .

[22]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[23]  Shunlin Liang,et al.  Earth system science related imaging spectroscopy — an assessment , 2009 .

[24]  Daniel Busby,et al.  Hierarchical adaptive experimental design for Gaussian process emulators , 2009, Reliab. Eng. Syst. Saf..

[25]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[26]  Hermann Kaufmann,et al.  On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing , 2009 .

[27]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[28]  A. Kokhanovsky,et al.  Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments , 2007, Atmospheric Research.

[29]  L. Guanter,et al.  A method for the atmospheric correction of ENVISAT/MERIS data over land targets , 2007 .

[30]  Paul E. Lewis,et al.  MODTRAN5: 2006 update , 2006, SPIE Defense + Commercial Sensing.

[31]  A. Lacis,et al.  Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data , 2004 .

[32]  Jean-Philippe Gastellu-Etchegorry,et al.  An interpolation procedure for generalizing a look-up table inversion method , 2003 .

[33]  Paul E. Lewis,et al.  FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[34]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[35]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[36]  M. D. McKay,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[37]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[38]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[39]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[40]  Michel M. Verstraete,et al.  Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media , 1998, IEEE Trans. Geosci. Remote. Sens..

[41]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[42]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[43]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[44]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[45]  Francis Zagolski,et al.  Modeling radiative transfer in heterogeneous 3D vegetation canopies , 1995, Remote Sensing.

[46]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[47]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[48]  P. Stein A Note on the Volume of a Simplex , 1966 .

[49]  Xiaobo Zhou,et al.  Global Sensitivity Analysis , 2017, Encyclopedia of GIS.

[50]  Luis Alonso,et al.  Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Christina Koblbauer,et al.  Barycentric Coordinates , 2010 .

[52]  Daniel Schläpfer,et al.  Cluster versus grid for operational generation of ATCOR's modtran-based look up tables , 2008, Parallel Comput..

[53]  Peter R. J. North,et al.  MERIS/AATSR synergy algorithms for cloud screening, aerosol retrieval and atmospheric correction , 2008 .

[54]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[55]  F. Marvasti Nonuniform sampling : theory and practice , 2001 .

[56]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[57]  J. Mockus,et al.  The Bayesian approach to global optimization , 1989 .

[58]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.