Transforming rectangles into squares
暂无分享,去创建一个
[1] Adrian Dumitrescu,et al. Coloring translates and homothets of a convex body , 2010, ArXiv.
[2] Erik Jan van Leeuwen,et al. Convex Polygon Intersection Graphs , 2010, GD.
[3] Alexandr V. Kostochka,et al. Coloring intersection graphs of geometric figures with a given clique number , 2004 .
[4] Michael Ian Shamos,et al. Geometric intersection problems , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).
[5] Derick Wood,et al. Finding Rectangle Intersections by Divide-and-Conquer , 1984, IEEE Transactions on Computers.
[6] János Pach,et al. Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.
[7] Alexandr V. Kostochka,et al. On the Chromatic Number of Intersection Graphs of Convex Sets in the Plane , 2004, Electron. J. Comb..
[8] Richard Pollack,et al. On the Combinatorial Classification of Nondegenerate Configurations in the Plane , 1980, J. Comb. Theory, Ser. A.
[9] Derick Wood,et al. An Optimal Worst Case Algorithm for Reporting Intersections of Rectangles , 1980, IEEE Transactions on Computers.
[10] Jürgen Richter-Gebert. Kombinatorische Realisierbarkeitskriterien für orientierte Matroide , 1989 .
[11] Thomas Ottmann,et al. Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.
[12] Ron Shamir,et al. A note on tolerance graph recognition , 2004, Discret. Appl. Math..
[13] G. Ringel. Teilungen der Ebene durch Geraden oder topologische Geraden , 1956 .
[14] János Pach,et al. Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.
[15] J. Kratochvil,et al. Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.
[16] Irina G. Perepelitsa. Bounds on the chromatic number of intersection graphs of sets in the plane , 2003, Discret. Math..
[17] Branko Grünbaum,et al. On a Coloring Problem. , 1960 .
[18] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[19] Peter W. Shor,et al. Stretchability of Pseudolines is NP-Hard , 1990, Applied Geometry And Discrete Mathematics.
[20] V. Leeuwen,et al. On the Representation of Disk Graphs , 2006 .