Identification of LPV State Space systems by a separable least squares approach

In this article, an algorithm to identify LPV State Space models is proposed. The LPV State Space system is in the companion reachable canonical form. Both the state matrix and the output vector coefficients are linear combinations of a set of nonlinear basis functions dependent on the scheduling signal. This model structure, although simple, can describe accurately the behaviour of many nonlinear systems by an adequate choice of the scheduling signal. The identification algorithm minimises a quadratic criterion of the output error. Since this error is a linear function of the output vector parameters, a separable nonlinear least squares approach is used to minimise the criterion function by a gradient method. The derivatives required by the algorithm are the states of LPV systems that need to be simulated at every iteration. The effectiveness of the algorithm is assessed by two simulated examples.

[1]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[2]  Daniel E. Rivera,et al.  Identification of affine linear parameter varying models for adaptive interventions in fibromyalgia treatment , 2013, 2013 American Control Conference.

[3]  Lawton H. Lee,et al.  Identification of Linear Parameter-Varying Systems Using Nonlinear Programming , 1999 .

[4]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 2002 .

[5]  G. Balas,et al.  Development of linear-parameter-varying models for aircraft , 2004 .

[6]  Carlo Novara Set membership identification of state-space LPV systems , 2012 .

[7]  M. Lovera,et al.  Identification of non-linear parametrically varying models using separable least squares , 2004 .

[8]  M. Lovera,et al.  Identification for gain-scheduling: a balanced subspace approach , 2007, 2007 American Control Conference.

[9]  Vito Cerone,et al.  Set-membership identification of LPV models with uncertain measurements of the time-varying parameter , 2008, 2008 47th IEEE Conference on Decision and Control.

[10]  Michel Verhaegen,et al.  Linear and Non-Linear System Identification Using Separable Least-Squares , 1997 .

[11]  M Maarten Steinbuch,et al.  Analytical and experimental modelling for gain-scheduling of a double scara robot , 2004 .

[12]  Linda Kaufman,et al.  A Variable Projection Method for Solving Separable Nonlinear Least Squares Problems , 1974 .

[13]  B. Ninness,et al.  System identification of linear parameter varying state-space models , 2011 .

[14]  Hossam Seddik Abbas,et al.  Frequency-weighted discrete-time LPV model reduction using structurally balanced truncation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[15]  R. Ravikanth,et al.  Identification of linear parametrically varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[16]  R. van de Molengraft,et al.  Experimental modelling and LPV control of a motion system , 2003, Proceedings of the 2003 American Control Conference, 2003..

[17]  Michel Verhaegen,et al.  Linear and Non-linear System Identification Using Separable Least-Squares , 1997, Eur. J. Control.

[18]  Michel Verhaegen,et al.  Subspace identification of MIMO LPV systems , 2011 .

[19]  V. Verdult Non linear system identification : a state-space approach , 2002 .

[20]  L. Kaufman A variable projection method for solving separable nonlinear least squares problems , 1974 .

[21]  Marco Lovera,et al.  Subspace identification of continuous-time state-space LPV models , 2011 .

[22]  Paulo J. Lopes dos Santos,et al.  An LPV Modeling and Identification Approach to Leakage Detection in High Pressure Natural Gas Transportation Networks , 2011, IEEE Transactions on Control Systems Technology.

[23]  Emanuele Carpanzano,et al.  Design of a gain scheduling controller for knee-joint angle control by using functional electrical stimulation , 2003, IEEE Trans. Control. Syst. Technol..

[24]  R. Tóth,et al.  On the similarity state transformation for Linear Parameter-Varying systems , 2011 .

[25]  Jan Swevers,et al.  Interpolation-Based Modeling of MIMO LPV Systems , 2011, IEEE Transactions on Control Systems Technology.

[26]  R. Tóth,et al.  State-Space realization of LPV Input-Output models: practical methods for the user , 2010, Proceedings of the 2010 American Control Conference.

[27]  Hugues Garnier,et al.  Refined instrumental variable methods for identification of LPV Box-Jenkins models , 2010, Autom..

[28]  Michel Verhaegen,et al.  Subspace identification of MIMO LPV systems using a periodic scheduling sequence , 2007, Autom..

[29]  Michel Verhaegen,et al.  Linear Parameter Varying Identification of Freeway Traffic Models , 2011, IEEE Transactions on Control Systems Technology.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Carlo Novara,et al.  Linear Parameter-Varying System Identification: New Developments and Trends , 2011 .

[32]  Carlo Novara,et al.  Direct Identification of Optimal SM-LPV Filters and Application to Vehicle Yaw Rate Estimation , 2011, IEEE Transactions on Control Systems Technology.

[33]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[34]  Marco Lovera,et al.  Identification of LPV State Space Models for Autonomic Web Service Systems , 2011, IEEE Transactions on Control Systems Technology.