Time-Splitting Schemes and Measure Source Terms for a Quasilinear Relaxing System

Several singular limits are investigated in the context of a 2 × 2 system arising for instance in the modeling of chromatographic processes. In particular, we focus on the case where the relaxation term and a L2 projection operator are concentrated on a discrete lattice by means of Dirac measures. This formulation allows one to study more easily some time-splitting numerical schemes.

[1]  R. Natalini,et al.  Convergence of relaxation schemes for conservation laws , 1996 .

[2]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[3]  A. I. Vol'pert THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .

[4]  Convergence results for some conservation laws with reflux boundary condition and a relaxation term arising in chemical engineering , 1998 .

[5]  A. Tzavaras,et al.  Contractive relaxation systems and the scalar multidimensional conservation law , 1997 .

[6]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[7]  Christian Klingenberg,et al.  Cauchy problem for hyperbolic conservation laws with a relaxation term , 1996 .

[8]  Laurent Gosse,et al.  Localization effects and measure source terms in numerical schemes for balance laws , 2002, Math. Comput..

[9]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[10]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation I. Spurious Solutions , 1993, SIAM J. Appl. Math..

[11]  N SIAMJ. KINETIC SEMIDISCRETIZATION OF SCALAR CONSERVATION LAWS AND CONVERGENCE BY USING AVERAGING LEMMAS , 1999 .

[12]  Pierre-Louis Lions,et al.  Diffusive limit for finite velocity Boltzmann kinetic models , 1997 .

[13]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[14]  Lorenzo Pareschi,et al.  Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation , 2000, SIAM J. Numer. Anal..

[15]  R. Aris First-order partial differential equations , 1987 .

[16]  B. Perthame,et al.  Kruzkov's estimates for scalar conservation laws revisited , 1998 .

[17]  R. Winther,et al.  A system of conservation laws with a relaxation term , 1996 .

[18]  Arnaud Heibig,et al.  Nonconservative products in bounded variation functions , 1992 .

[19]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[20]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[21]  B. Perthame,et al.  A kinetic equation with kinetic entropy functions for scalar conservation laws , 1991 .

[22]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[23]  E. Tadmor,et al.  Stiff systems of hyperbolic conservation laws: convergence and error estimates , 1997 .

[24]  Aslak Tveito,et al.  An L 1 --Error Bound for a Semi-Implicit Difference Scheme Applied to a Stiff System of Conservation Laws , 1997 .

[25]  Laurent Gosse,et al.  Convergence of relaxation schemes to the equations of elastodynamics , 2001, Math. Comput..

[26]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[27]  F. Bouchut Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws , 1999 .

[28]  C. Makridakis,et al.  Convergence and error estimates of relaxation schemes for multidimensional conservation laws , 1999 .

[29]  Mathematisches Forschungsinstitut Oberwolfach,et al.  Hyperbolic Conservation Laws , 2004 .

[30]  Randall J. LeVeque,et al.  A Modified Fractional Step Method for the Accurate Approximation of Detonation Waves , 2000, SIAM J. Sci. Comput..

[31]  A. Tzavaras,et al.  Representation of weak limits and definition of nonconservative products , 1999 .

[32]  Alexis Vasseur Kinetic Semidiscretization of Scalar Conservation Laws and Convergence by Using Averaging Lemmas , 1999 .

[33]  Laurent Gosse,et al.  An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .