GeSn p-i-n detectors integrated on Si with up to 4% Sn

GeSn heterojunction photodetectors on Si substrates were grown with Sn concentration up to 4%, fabricated for vertical light incidence, and characterized. The complete layer structure was grown by means of ultra low temperature (100 °C) molecular beam epitaxy. The Sn content shifts the responsivity into the infrared, about 310 nm for the 4% Sn sample. An increase of the optical responsivity for wavelengths higher than 1550 nm can be observed with increasing Sn content. At 1600 nm, the optical responsivity is increased by more than a factor of 10 for the GeSn diode with 4% Sn in comparison to the Ge reference diode.

[1]  O. Richard,et al.  Low-temperature Ge and GeSn Chemical Vapor Deposition using Ge2H6 , 2012 .

[2]  J. Tolle,et al.  High-Performance Near-IR Photodiodes: A Novel Chemistry-Based Approach to Ge and Ge–Sn Devices Integrated on Silicon , 2011, IEEE Journal of Quantum Electronics.

[3]  G. Abstreiter,et al.  Single‐crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties , 1990 .

[4]  Jörg Schulze,et al.  Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy , 2011 .

[5]  J. Tolle,et al.  Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes , 2011 .

[6]  Paul Crozat,et al.  Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55μm operation , 2005 .

[7]  Bahram Jalali,et al.  Can silicon change photonics? , 2008 .

[8]  M. Berroth,et al.  Ge-on-Si p-i-n Photodiodes With a 3-dB Bandwidth of 49 GHz , 2009, IEEE Photonics Technology Letters.

[9]  A. Grill,et al.  High-speed Germanium-on-SOI lateral PIN photodiodes , 2004, IEEE Photonics Technology Letters.

[10]  S. Su,et al.  The contributions of composition and strain to the phonon shift in Ge1―xSnx alloys , 2011 .

[11]  Qiming Wang,et al.  GeSn p-i-n photodetector for all telecommunication bands detection. , 2011, Optics express.

[12]  J. Werner,et al.  Growth of silicon based germanium tin alloys , 2012 .

[13]  M. Oehme,et al.  Germanium waveguide photodetectors integrated on silicon with MBE , 2008 .

[14]  B. Holländer,et al.  Laser synthesis of germanium tin alloys on virtual germanium , 2012 .

[15]  Akira Sakai,et al.  Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates , 2006 .

[16]  J. Werner,et al.  Photocurrent analysis of a fast Ge p-i-n detector on Si , 2007 .

[17]  R. Soref Silicon Photonics: A Review of Recent Literature , 2010 .

[18]  J. Werner,et al.  Germanium on Silicon Photodetectors with Broad Spectral Range , 2010 .

[19]  M. Oehme,et al.  Molecular beam epitaxy of highly antimony doped germanium on silicon , 2008 .

[20]  Manfred Berroth,et al.  High bandwidth Ge p-i-n photodetector integrated on Si , 2006 .

[21]  K. Yu,et al.  Band anticrossing in highly mismatched Sn x Ge 1-x semiconducting alloys , 2008 .

[22]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  John Kouvetakis,et al.  New classes of Si-based photonic materials and device architectures via designer molecular routes , 2007 .

[24]  J. Werner,et al.  Molecular beam epitaxy grown GeSn p-i-n photodetectors integrated on Si , 2012 .

[25]  J. Schulze,et al.  Room-Temperature Electroluminescence From GeSn Light-Emitting Pin Diodes on Si , 2011, IEEE Photonics Technology Letters.