Lattice Boltzmann simulation of pattern formation under cross-diffusion

In this paper, a lattice Boltzmann model for cross-reaction-diffusion system is proposed. In order to recover the cross-diffusion equations by lattice Boltzmann method, we transform the equations into a complex reaction-diffusion equation. This complex reaction-diffusion equation is recovered with higher-order accuracy of the truncation error. Based on this model, two typical reaction-diffusion systems with cross-diffusion, predator-prey system and inhomogeneous Brusselator model are simulated. The numerical results show that this model can be used to simulate the cross-reaction-diffusion systems.

[1]  X. Niu,et al.  A Numerical Study of Jet Propulsion of an Oblate Jellyfish Using a Momentum Exchange-Based Immersed Boundary-Lattice Boltzmann Method , 2014 .

[2]  Moran Wang,et al.  Electroosmosis in homogeneously charged micro- and nanoscale random porous media. , 2007, Journal of colloid and interface science.

[3]  Bernard J. Matkowsky,et al.  Turing Pattern Formation in the Brusselator Model with Superdiffusion , 2008, SIAM J. Appl. Math..

[4]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Joel Koplik,et al.  Lattice Boltzmann method for non-Newtonian (power-law) fluids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Bastien Chopard,et al.  Lattice Boltzmann Computations and Applications to Physics , 1999, Theor. Comput. Sci..

[7]  John Abraham,et al.  Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow , 2007, J. Comput. Phys..

[8]  S. Succi,et al.  Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method , 1989 .

[9]  Moran Wang,et al.  Structure Effects on Electro-Osmosis in Microporous Media , 2012 .

[10]  Guangwu Yan,et al.  Numerical Studies Based on Higher-Order Accuracy Lattice Boltzmann Model for the Complex Ginzburg-Landau Equation , 2012, J. Sci. Comput..

[11]  Moran Wang,et al.  Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods , 2007, J. Comput. Phys..

[12]  S Succi,et al.  Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Ricardo Ruiz-Baier,et al.  Analysis of a finite volume method for a cross-diffusion model in population dynamics , 2011 .

[15]  Q. Kang,et al.  Electrokinetic transport in microchannels with random roughness. , 2009, Analytical chemistry.

[16]  S. Chen,et al.  Lattice methods and their applications to reacting systems , 1993, comp-gas/9312001.

[17]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[18]  Zhixin Li,et al.  A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer , 2007 .

[19]  O. Diekmann,et al.  Patterns in the effects of infectious diseases on population growth , 1991, Journal of mathematical biology.

[20]  Hiroshi Yamaguchi,et al.  A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow , 2014, Comput. Math. Appl..

[21]  Ye Fan,et al.  Pattern formation of an epidemic model with cross diffusion , 2014, Appl. Math. Comput..

[22]  M. C. Lombardo,et al.  Pattern formation driven by cross-diffusion in a 2D domain , 2012, 1211.4412.

[23]  DAWSCMV.,et al.  LATTICE METHODS AND THEIR APPLICATIONS TO REACTING SYSTEMS , 1994 .

[24]  Moran Wang,et al.  Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels. , 2006, Journal of colloid and interface science.

[25]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[26]  Qinjun Kang,et al.  Modeling of electrokinetic transport in silica nanofluidic channels. , 2010, Analytica chimica acta.

[27]  Ricardo Ruiz-Baier,et al.  Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion , 2014, J. Comput. Phys..

[28]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[29]  Matthaeus,et al.  Lattice Boltzmann model for simulation of magnetohydrodynamics. , 1991, Physical review letters.

[30]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[31]  Guangwu Yan,et al.  Lattice Boltzmann model for the complex Ginzburg-Landau equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  K. M. Bryden,et al.  Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation , 2006 .

[33]  S. Orszag,et al.  Extended Boltzmann Kinetic Equation for Turbulent Flows , 2003, Science.

[34]  Guangwu Yan,et al.  A higher-order moment method of the lattice Boltzmann model for the Korteweg-de Vries equation , 2009, Math. Comput. Simul..

[35]  Lei Zhang,et al.  Complex patterns in a predator-prey model with self and cross-diffusion , 2011 .

[36]  E. Meron,et al.  Diversity of vegetation patterns and desertification. , 2001, Physical review letters.

[37]  S. Succi,et al.  A Lattice Boltzmann Model for Anisotropic Crystal Growth from Melt , 2002 .

[38]  Ricardo Ruiz-Baier,et al.  Nonlinear Analysis: Real World Applications Mathematical Analysis and Numerical Simulation of Pattern Formation under Cross-diffusion , 2022 .

[39]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[40]  S Succi,et al.  Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[42]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[43]  Peter V. Coveney,et al.  LATTICE BOLTZMANN SIMULATION OF THE FLOW OF NON-NEWTONIAN FLUIDS IN POROUS MEDIA , 2003 .

[44]  Lakshmi Narayan Guin Existence of spatial patterns in a predator-prey model with self- and cross-diffusion , 2014, Appl. Math. Comput..

[45]  John G. Georgiadis,et al.  Migration of a van der Waals bubble: Lattice Boltzmann formulation , 2001 .

[46]  B. Shi,et al.  Lattice BGK model for incompressible Navier-Stokes equation , 2000 .

[47]  Sergei Petrovskii,et al.  A minimal model of pattern formation in a prey-predator system , 1999 .

[48]  Alexander J. Wagner,et al.  Influence of Monolayer-Monolayer Coupling on the Phase Behavior of a Fluid Lipid Bilayer , 2007, Biophysical journal.

[49]  Moran Wang,et al.  Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods , 2010, J. Comput. Phys..

[50]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[51]  Succi Numerical solution of the Schrödinger equation using discrete kinetic theory. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.