A symmetry test for quasilinear coupled systems

All quasilinear NLS-type sytems with fourth-order symmetry are listed. Vector generalizations of some of them are constructed. Local master symmetries for several systems from the list are found.

[1]  Peter J. Olver,et al.  Integrable Evolution Equations on Associative Algebras , 1998 .

[2]  Thomas Wolf,et al.  The Program CRACK for Solving PDEs in General Relativity , 1996 .

[3]  A. Valenti,et al.  Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics , 2012 .

[4]  Thomas Wolf,et al.  An Efficiency Improved Program Liepde for Determining Lie-Symmetries of PDES , 1993 .

[5]  S. I. Svinolupov,et al.  On linearizable evolution equations of second order , 1992 .

[6]  Andreas Brand,et al.  The Computer Algebra Package CRACK for Investigating PDEs , 1992 .

[7]  V. N. Robuk,et al.  Formation of nonlinear structures in exactly solvable dissipative systems , 1989 .

[8]  N. Nakanishi,et al.  Symmetries of Evolution Equations , 1989 .

[9]  V. Sokolov On the symmetries of evolution equations , 1988 .

[10]  A. Mikhailov,et al.  Extension of the module of invertible transformations. Classification of integrable systems , 1988 .

[11]  Alexey Borisovich Shabat,et al.  The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems , 1987 .

[12]  W. Eckhaus,et al.  Nonlinear evolution equations, rescalings, model PDEs and their integrability: II , 1987 .

[13]  F Calogero,et al.  Nonlinear evolution equations, rescalings, model PDES and their integrability: I , 1987 .

[14]  E. Korotyaev Scattering theory for a three-particle system with two-body interactions periodic in time , 1985 .

[15]  B. Fuchssteiner Mastersymmetries, Higher Order Time-Dependent Symmetries and Conserved Densities of Nonlinear Evolution Equations , 1983 .

[16]  Athanassios S. Fokas,et al.  A symmetry approach to exactly solvable evolution equations , 1980 .

[17]  Alexey Borisovich Shabat,et al.  Evolutionary equations with nontrivial Lie - Bäcklund group , 1980 .

[18]  N. Kh. Ibragimov,et al.  Infinite Lie-Beklund algebras , 1980 .

[19]  N. S. Barnett,et al.  Private communication , 1969 .