Optimal Vaccination Strategies of an SIR Epidemic Model with a Saturated Treatment

In the present work, we consider a mathe- matical model of an SIR epidemic model with saturated incidence rate and saturated treatment function. We use an optimal vaccination strategies to minimize the susceptible and infected individuals and to maximize the number of recovered individuals. We work in the nonlinear optimal control framework. Some results concerning the existence and the characterization of the optimal control will be given. Numerical simulations are also presented.

[1]  Xianning Liu,et al.  Backward bifurcation of an epidemic model with saturated treatment function , 2008 .

[2]  Hem Raj Joshi,et al.  Optimal control of an HIV immunology model , 2002 .

[3]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[4]  K. Hattaf,et al.  Two optimal treatments of HIV infection model , 2010 .

[5]  Mostafa Rachik,et al.  Optimal control and infectiology: Application to an HIV/AIDS model , 2006, Appl. Math. Comput..

[6]  Mostafa Rachik,et al.  Optimal control of an epidemic model with a saturated incidence rate , 2012 .

[7]  C P Farrington,et al.  On vaccine efficacy and reproduction numbers. , 2003, Mathematical biosciences.

[8]  O. Diekmann Mathematical Epidemiology of Infectious Diseases , 1996 .

[9]  Wendi Wang Backward bifurcation of an epidemic model with treatment. , 2006, Mathematical biosciences.

[10]  Khalid Hattaf,et al.  Optimal Control of a Delayed HIV Infection Model with ImmuneResponse Using an Efficient Numerical Method , 2012 .

[11]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[12]  Daniel Hlubinka,et al.  Kermack-McKendrick epidemic model revisited , 2007, Kybernetika.

[13]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[14]  Wang Wendi,et al.  Global dynamics of an epidemic model with time delay , 2002 .

[15]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[16]  Fred Brauer,et al.  Some simple epidemic models. , 2005, Mathematical biosciences and engineering : MBE.

[17]  Shigui Ruan,et al.  Global analysis of an epidemic model with nonmonotone incidence rate , 2006, Mathematical Biosciences.

[18]  J. Velasco-Hernández,et al.  A simple vaccination model with multiple endemic states. , 2000, Mathematical biosciences.

[19]  Dahlard L. Lukes,et al.  Differential Equations: Classical to Controlled , 2012 .

[20]  A. Zee,et al.  GLOBAL SPREAD OF INFECTIOUS DISEASES , 2003, cond-mat/0306628.

[21]  John T. Workman,et al.  Optimal Control Applied to Biological Models , 2007 .

[22]  Jianjun Jiao,et al.  Pest management through continuous and impulsive control strategies , 2007, Biosyst..

[23]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[24]  B. Shulgin,et al.  Pulse vaccination strategy in the SIR epidemic model , 1998, Bulletin of mathematical biology.

[25]  Yong Han Kang,et al.  Stability analysis and optimal vaccination of an SIR epidemic model , 2008, Biosyst..

[26]  M. Rachik,et al.  Optimal Antiviral Treatment Strategies of HBV Infection Model with Logistic Hepatocyte Growth , 2013 .

[27]  J. Janssen,et al.  Deterministic and Stochastic Optimal Control , 2013 .

[28]  Seyed M. Moghadas,et al.  A qualitative study of a vaccination model with non-linear incidence , 2003, Appl. Math. Comput..