Channel Upgradation for Non-Binary Input Alphabets and MACs

Consider a single-user or multiple-access channel with a large output alphabet. A method to approximate the channel by an upgraded version having a smaller output alphabet is presented and analyzed. The original channel is not necessarily symmetric and does not necessarily have a binary input alphabet. Also, the input distribution is not necessarily uniform. The approximation method is instrumental when constructing capacity achieving polar codes for an asymmetric channel with a non-binary input alphabet. Other settings in which the method is instrumental are the wiretap setting as well as the lossy source coding setting.

[1]  Alexander Vardy,et al.  Constructing polar codes for non-binary alphabets and MACs , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[2]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[3]  Rüdiger L. Urbanke,et al.  How to achieve the capacity of asymmetric channels , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[4]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[5]  Emre Telatar,et al.  Polar Codes for the m-User MAC , 2010 .

[6]  Brian M. Kurkoski,et al.  Low-complexity quantization of discrete memoryless channels , 2016, 2016 International Symposium on Information Theory and Its Applications (ISITA).

[7]  Eren Sasoglu Polar codes for discrete alphabets , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[8]  Rüdiger L. Urbanke,et al.  Polar Codes are Optimal for Lossy Source Coding , 2009, IEEE Transactions on Information Theory.

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  野崎 隆之,et al.  国際会議参加報告:IEEE International Symposium on Information Theory , 2015 .

[11]  T. Aaron Gulliver,et al.  Upgraded Approximation of Non-Binary Alphabets for Polar Code Construction , 2013, ArXiv.

[12]  Emre Telatar,et al.  Polar Codes for the Two-User Multiple-Access Channel , 2010, IEEE Transactions on Information Theory.

[13]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[14]  Ido Tal On the Construction of Polar Codes for Channels With Moderate Input Alphabet Sizes , 2017, IEEE Transactions on Information Theory.

[15]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[16]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[17]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[18]  Ido Tal,et al.  Channel Upgradation for Non-Binary Input Alphabets and MACs , 2017, IEEE Trans. Inf. Theory.

[19]  Ryuhei Mori,et al.  Performance and construction of polar codes on symmetric binary-input memoryless channels , 2009, 2009 IEEE International Symposium on Information Theory.

[20]  R. Urbanke,et al.  How to Achieve the Capacity of Asymmetric Channels , 2014 .

[21]  Junya Honda,et al.  Polar coding without alphabet extension for asymmetric channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[22]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.

[23]  Ryuhei Mori Properties and Construction of Polar Codes , 2010, ArXiv.

[24]  Emre Telatar,et al.  On the construction of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[25]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[26]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[27]  David Burshtein Coding for asymmetric side information channels with applications to polar codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[28]  Alexander Barg,et al.  Construction of polar codes for arbitrary discrete memoryless channels , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[29]  Shlomo Shamai,et al.  Secrecy-Achieving Polar-Coding for Binary-Input Memoryless Symmetric Wire-Tap Channels , 2010, ArXiv.

[30]  Emre Telatar,et al.  Polar Codes for the $m$-User Multiple Access Channel , 2012, IEEE Transactions on Information Theory.

[31]  Emre Telatar,et al.  Polar codes for q-ary source coding , 2010, 2010 IEEE International Symposium on Information Theory.

[32]  Mikael Skoglund,et al.  Nested Polar Codes for Wiretap and Relay Channels , 2010, IEEE Communications Letters.